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276 J.L. Fouquet, H. Thuillier, J.M. Vanherpe and A.P. Wojda1. IntrodutionAs usually, for any undireted graph G, we denote by V (G) the set of itsverties and by E(G) the set of its edges and we onsider, as usual, that
|V (G)| = n and |E(G)| = m. If F ⊆ E(G) then V (F ) is the set of vertieswhih are inident with some edges of F . For any path P we shall denoteby l(P ) the length of P , that is to say the number of its edges. A vertex ofa path P distint from an end-vertex is said to be an internal vertex. If uand v are verties of a path P then P [u, v] denotes the subpath of P whoseend-verties are u and v. A strong mathing C in a graph G is a mathing
C suh that there is no edge of E(G) onneting any two edges of C, or,equivalently, suh that C is the edge-set of the subgraph of G indued by thevertex-set V (C). A 2-fator of G is a spanning subgraph whose omponentsare yles. If every yle of a 2-fator has an even length then we say thatthis 2-fator is an even 2-fator.A linear-k-forest is a forest whose omponents are paths of length atmost k. The linear-k-arboriity of an undireted graph G is de�ned in [5℄ asthe minimum number of linear-k-forests needed to partition the set E(G).The linear-k-arboriity is a natural re�nement of the linear-arboriity in-trodued by Harary [6℄ (orresponding to linear-(n − 1)-arboriity). Thelinear-k-arboriity will be denoted by lak(G).Let χ

′

(G) be the lassial hromati index (minimum edge olouring)and let la(G) be the linear arboriity of G. We learly have:
la(G) = lan−1(G) ≤ lan−2(G) ≤ · · · ≤ la2(G) ≤ la1(G) = χ

′

(G).We know by Vizing's Theorem [10℄ that la1(G) ≤ ∆(G) + 1 (where ∆(G)is the maximum degree of G). For any k ≥ 2, we have (lower bound omesfrom [5℄ and upper bound from [3℄):
max
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≤ lak(G) ≤ ∆(G).In this paper we onsider ubi graphs, that is to say �nite simple 3-regulargraphs. Sine in a ubi graph G we have 3n = 2m, by the previous formulawe obtain:
la2(G) = 3 and for any k ≥ 3, 2 ≤ lak(G) ≤ 3.



On Odd and Semi-Odd Linear Partitions of ... 277The ubi graph obtained from two disjoint yles of length 3 onneted bya perfet mathing is denoted by PR3. It was shown by Akiyama, Exoo andHarary [1℄ that la(G) = 2 when G is ubi. In [3℄ Bermond et al. onjeturedthat la5(G) = 2. Thomassen [9℄ proved the onjeture, whih is best possiblesine, in view of la4(K3,3) = 3 and la4(PR3) = 3, 5 annot be replaed by 4.A partition of E(G) into two linear forests LB and LR will be alleda linear partition and we shall denote this linear partition L = (LB , LR) .An odd linear forest is a linear forest in whih eah path is a path of oddlength. A semi-odd linear partition is a linear partition L = LB ∪ LR suhthat LB or LR is an odd linear forest. An odd linear partition is a partitionof E(G) into two odd linear forests. For i ∈ {B,R} let ω(Li) be the numberof omponents (or maximal paths) of Li. Sine every vertex of G is eitherend-vertex of a maximal path of LB or end-vertex of a maximal path of LR,we have
ω(LB) + ω(LR) =

|V (G)|

2
.2. Jaeger's GraphsA speial lass of ubi graphs introdued by F. Jaeger will be onsidered.De�nition 2.1. Let us all a Jaeger's mathing a perfet mathing whihis the union of two strong mathings. A ubi graph G is a Jaeger's graphwhenever G ontains a Jaeger's mathing.In his thesis [8℄ Jaeger alled these ubi graphs equitable and pointed outthat the improper 2-olouring {B,R} of their verties indued by a perfetmathing M union of two disjoint strong mathings MB and MR leads to abalaned olouring as de�ned by Bondy [4℄.When G is a ubi graph having a 2-fator of C4's, say F , we onsiderthe auxiliary 2-regular graph G′ de�ned as follows: every C4 of F is replaedwith its omplementary graph (whih is a 2K2).Theorem 2.2. Let G be a onneted ubi graph having a 2-fator of squares,say F and let p be the number of yles of G′. Then there are 2p−1 Jaeger'smathings in G whih interset F .

P roof. We �rst prove that there are at most two types of Jaeger's math-ings in G.



278 J.L. Fouquet, H. Thuillier, J.M. Vanherpe and A.P. WojdaClaim. Let M = MB ∪MR be a Jaeger's mathing of G. If M intersets Fthen every C4 of F ontains an edge of MB and an edge of MR.
P roof of Claim. Reall that MB and MR are strong mathings. With-out loss of generality we may assume that there is some edge say ab of some
C4 in F , say abcd whih belongs to MB . Sine M is a perfet mathing and
MB is a strong mathing the verties c and d must be the endpoint of someedge(s) of MR. Sine MR is a strong mathing we have cd ∈ MR. Let a′b′c′d′be another C4 of F whih is onneted to abcd by some edge say aa′. Theedge aa′ is not an edge of M (M is a mathing) and sine a′ must be anendpoint of an edge of MR, MR intersets a′b′c′d′. Consequently, G beingonneted we have that MB and MR interset all yles of F .It follows that a Jaeger's mathing of G is either ontained into F or disjointfrom F .We now establish a orrespondene between the orientations of the ylesof G′ and the Jaeger's mathings of G whih interset F .Let us give an orientation of the yles of G′. Going bak now to G,eah C4 of F has an edge onneted to two out-going edges and an edgeonneted to two in-going edges. Let MB be the set of edges onnetedto two out-going edges over all the C4's of F while MR ontains the edgesonneted to two in-going edges. It's an easy task to hek that MB ∪ MRis a Jaeger's mathing of G.Conversely let us onsider a Jaeger's mathing M = MB ∪ MR of Gwhih intersets F . By the above Claim, eah C4 of F ontains an edge of
MB and an edge of MR. For any C4 of F and for any vertex v of this C4 wedenote ev the edge of E(G)\E(F) that is adjaent to v. We know that v isan endpoint of an edge in MB or in MR. We give an orientation to the edge
ev in suh a way that ev is an out-going edge (that is v is the origin) if andonly if v is endpoint of an edge of MB . Sine every edge of E(G)\E(F) isonneted to two C4's of F those edges are oriented twie; more preisely:when aa′ is an edge onneting two yles of F , say abcd and a′b′c′d′, if
aa′ = ea is an out-going edge for the yle abcd then aa′ = ea′ must be anin-going edge for a′b′c′d′ for otherwise MB would not be a strong mathing.Consequently the given orientation of all edges ev (v ∈ V (G)) extends to anorientation of the yles of G′.We have 2p possible orientations of the yles of G′. A given orienta-tion of eah yle of G′ and the opposite orientations of these yles yield to



On Odd and Semi-Odd Linear Partitions of ... 279the same partition of M , onsequently, there are 2p−1 Jaeger's mathingsinterseting the 2-fator F of G. This �nishes the proof.By Theorem 2.2 every ubi graph having a 2-fator of squares has at leastone Jaeger's mathing. Hene we onlude this subsetion with the followingorollaries.Corollary 2.3. A ubi graph having a 2-fator of squares is a Jaeger'sgraph.Furthermore, we an derive from Theorem 2.2 a simple linear time algorithmfor �nding a Jaeger's mathing in a onneted ubi graph whih have a 2-fator of squares.It an be notied that every ubi graph with a perfet mathing M anbe transformed into a Jaeger's graph by using the transformation (squareextension) depited in Figure 1 on eah edge of M . Indeed, the resultinggraph has a 2-fator of squares and we an apply Theorem 2.2.
Figure 1. Square extensionCorollary 2.4. A onneted ubi graph is 3-edge olourable if and only ifthere is a perfet mathing N suh that the ubi graph obtained in using asquare extension on eah edge of N leads to a Jaeger's graph having an oddnumber (at least 3) of Jaeger's mathings.

P roof. Let G be a ubi graph suh that G′, obtained from G by squareextensions on eah edge of N , has an odd number of Jaeger's mathings. Let
F be the 2-fator of C4's of G′ obtained by these square extensions. Sine
G′ has an odd number of Jaeger's mathings, Theorem 2.2 says that there isa Jaeger's mathing M of G′ whih avoids all the edges of F . Clearly, thereis a bijetion between M and the 2-fator E(G)\N . Sine M is the union ofthe strong mathings MB and MR, going bak to G the edges of MB ∪ MRgive rise to an even 2-fator E(G) \N of G whih, together with N , leads toa 3-edge olouring of G.



280 J.L. Fouquet, H. Thuillier, J.M. Vanherpe and A.P. WojdaConversely, assume that G is 3-edge olourable. Then extending eah edgeof a given olour in a 3-edge olouring of G leads to a graph G′ whih has a
2-fator of squares. We an hoose the square of G′ extending an edge of Gof the given olour in suh a way that any of the two other olours induesa strong mathing. Indeed, the edges of the two other olours give rise to aJaeger's mathing in G′ avoiding every square so onstruted and Theorem2.2 applies. 3. Semi-Odd Linear PartitionsWe are interested by relationships between perfet mathings and semi-oddlinear partitions and we generalize a theorem of Aldred and Wormald [2℄.We will ome again on their result in the next setion.Theorem 3.1. Let G be a ubi graph having a perfet mathing M . Thenthere exists a set F ⊆ E(G) − M interseting eah yle of the 2-fator
G − M suh that F + M is an odd linear forest.
P roof. Let {C1, C2, . . . , Ck} be the yles of G−M (with k ≥ 1). Clearlyif e is an edge of C1 then the set M ∪ {e} indues an odd linear forest of G(made of a path of length 3 and a mathing). Let us suppose that k ≥ 2 andlet i suh that 1 ≤ i < k. We suppose that for every j with 1 ≤ j ≤ i wehave hosen an edge ej of Cj suh that Fi + M is an odd linear forest (with
Fi = {e1, e2, . . . , ei}). Let xy be an edge of Ci+1. If Fi + M + xy ontains ayle then xy belongs to this yle. Thus, Fi + M ontains a path P having
x and y as end verties. Let z be the neighbour of y on Ci+1 distint from
x. Then, Fi + M + yz ontains no yle (if it ontains a yle, then Fi + Montains a path P ′ having y and z as end verties, ontraditing the existeneof P ). So, Ci+1 ontains an edge, say ei+1, suh that Fi + ei+1 + M is anodd linear forest. Let us denote Fi + ei+1 by Fi+1. The results follows byindution.De�nition 3.2. For every odd path P = [a0, a1, . . . , a2l+1], with l ≥ 0, wesay that the edges {a0a1, a2a3, . . . , a2la2l+1} are at even distane from theend verties of P .Theorem 3.3. A ubi graph has a perfet mathing if and only if it has asemi-odd linear partition.
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P roof. If M is a perfet mathing of a ubi graph G then by Theorem3.1 the graph G has a set of edges F interseting every yle of the 2-fator
G \ M suh that F + M is an odd linear forest. Set LB = F + M and
LR = G − F − M Then, L = (LB , LR) is a semi-odd linear partition.Conversely, if the graph has a semi-odd linear partition L = (LB , LR) ,we suppose without loss of generality that LB is an odd linear forest. Let
M be the set of edges of LB at even distane from the end verties of themaximal paths of LB . It is a routine matter to hek that M is a mathing.Sine LB is a spanning forest, M is a perfet mathing.For any ubi graph G having a perfet mathing (or, equivalently, a 2-fator)we denote by ρ(G) the minimum number of even maximal paths appearingin a semi-odd linear partition, and we denote by o(G) the minimum numberof odd yles appearing in a 2-fator of G (we note that o(G) is an evennumber). If ρ(L) denotes the number of even maximal paths of a semi-oddlinear partition L = (LB , LR) , then ρ(G) = Min{ρ(L)| L is a semi-oddlinear partition of G}.Theorem 3.4. Let G be a ubi graph having a 2-fator (or, equivalently, aperfet mathing). Then ρ(G) = o(G).
P roof. Let us suppose that G has a 2-fator. Let {C1, C2, . . . , Ck} be a
2-fator of G having o(G) odd yles, and let M be the perfet mathingassoiated with this 2-fator. By Theorem 3.1 we an hoose a set of edges
F (one by yle) suh that F + M is an odd linear forest LB. The set
E(G) − E(LB) indues a linear forest LR and we onsider the semi-oddlinear partition L = (LB , LR) . The number ρ(L) of even maximal pathsof LR is equal to the number o(G) of odd yles in {C1, C2, . . . , Ck}. Thus,
ρ(G) ≤ o(G).Now let L = (LB , LR) be a semi-odd linear partition suh that LB isan odd linear forest. As in Proof of Theorem 3.3, let M be the perfetmathing made of the edges of LB at even distane from the end verties ofthe maximal paths of LB, and let {C1, C2, . . . , Ck} be the 2-fator G − M .Every path of LB of length ≥ 3 intersets this 2-fator and we see that
E(LB)∩ (E(C1)∪E(C2) · · · ∪E(Ck)) is a mathing. Now onsider any yle
Ci of this 2-fator. Clearly, E(LB) intersets E(Ci). Let {e1, e2, . . . , er} =
E(LB)∩E(Ci). We see that E(Ci)−E(LB) indues a set of elementary paths
{P1, P2, . . . , Pr} whih are preisely maximal paths of LR. If P1, P2, . . . , Prhave odd lengths then |E(Ci)| = r +

∑j=r
j=1

l(Pj) is even. Thus, if Ci is an



282 J.L. Fouquet, H. Thuillier, J.M. Vanherpe and A.P. Wojdaodd yle then at least one of these paths has an even length. Then, ρ(L)is greater or equal to the number of odd yle in {C1, C2, . . . , Ck}. Hene,
ρ(L) ≥ o(G). By hoosing L suh that ρ(L) = ρ(G), we obtain ρ(G) ≥ o(G).4. Odd Linear PartitionsLet G be a ubi graph. Assume that L = (LB , LR) is a linear partition ofits edge set. By olouring alternately the edges of the maximal paths in LBwith α and γ and those of LR with β and δ, we get a 4-edge olouring.We note that a ubi graph G an be fatored into two odd linear forestsif and only if ρ(G) = 0 and that G has an even 2-fator (or, equivalently, is
3-edge olourable) if and only if o(G) = 0. So, the following result of Aldredand Wormald an be obtained as a orollary of Theorem 3.4.Theorem 4.1 [2℄. Let G be a ubi graph. Then the following propertiesare equivalent:

1. G is 3-edge olourable (that is χ′(G) = 3).

2. G an be fatored into two odd linear forests.Reall here a sketh of their proof. Suppose that L = (LB , LR) is an oddlinear partition of G. A proper 3-edge olouring of G is obtained by olouringthe edges of the paths in LB alternately with α and γ so that eah path in
LB has its �rst and last edges oloured with α, and by olouring the edges ofthe paths in LR alternately with β and γ so that eah path in LR has its �rstand last edges oloured with β. Conversely, if G is 3-edge olourable, let usonsider a proper 3-edge olouring using α, β and γ as olours. Pik an edgefrom eah yle of the even 2-fator Φ(α, β) indued by the olours α and β,and let F be the set of these piked edges. The subgraph of G formed by Fand the perfet mathing R indued by olour γ has onneted omponentswhih are odd paths or even yles. Eah even yle is broken by hoosingan edge oloured with γ (let F ′ be this set of edges). Then LR = R+F −F ′is a set of odd paths as well as LB = Φ(α, β) − F + F ′, leading to an oddlinear partition L = (LB , LR) of G.The remarkable point here is that F is a minimal transversal of theyles of Φ(α, β) where eah edge of F has been hosen at random. Theirstrategy is a greedy strategy with simple aommodations in order to brokesome even yles. In our proof of Theorem 3.4 we hoose randomly an edge



On Odd and Semi-Odd Linear Partitions of ... 283on a yle, and if this edge is not aeptable we hoose an inident edge. Thisstrategy is intermediate between the greedy strategy of Aldred and Wormaldand the strategy that we will develop in the next subsetions. We shall seethat when suitably hoosing edges in F we extend their result.4.1. RedutionsAssume that G is a ubi 3-edge olourable graph and let Φ be a 3-edgeolouring of G. For any edge e, let us denote the olour of e by Φ(e). Let αand β be any two distint olours of Φ and let γ be the third olour. Thesubset of the edges of G oloured with α or with β indues an even 2-fator.In the following the 2-fator indued by any two distint olours α and β willbe denoted by Φ(α, β). Any yle of Φ(α, β) is said to be an αβ-yle. Sine
α and β are arbitrary olours it is lear that the onneted omponents ofa 3-edge olourable ubi graph are 2-onneted subgraphs. We need somespei� de�nitions for this setion.De�nition 4.2. Let α and β be any two distint olours of Φ. In thefollowing SMG(α, β) will denote a strong mathing of G interseting every
αβ-yle (when suh a strong mathing exists).De�nition 4.3. Let α and β be any two distint olours of Φ. Let xy bean edge of G and let x′ and x′′ (respetively y′ and y′′) be the (distint)neighbours of x (of y, respetively) distint from y (respetively x) suh that
x′ 6= y′′ or x′′ 6= y′ and suppose that x′y′ and x′′y′′ are not edges of G. Let ussuppose that Φ(xy) = α, Φ(xx′) = Φ(yy′) = β and Φ(xx′′) = Φ(yy′′) = γ.If x′ 6= y′′ or x′′ 6= y′ then the edge xy is said to be an α-free edge. Notethat edge x′y′′ (respetively x′′y′) may exist, and in this ase Φ(x′y′′) = α(respetively Φ(x′′y′) = α). We notie that, without loss of generality, thereare two ases:

• Case 1. x′ 6= y′′ and x′′ 6= y′.
• Case 2. x′ = y′′ and x′′ 6= y′.The 3-edge oloured ubi graph G′ on (n − 2) verties obtained from G bydeleting verties x and y and their inident edges and adding the edges x′y′and x′′y′′, oloured respetively by β and γ, is said to be obtained from Gby redution of an α-free edge. Situations are depited on Figures 2 and 3.Clearly, if G ontains a triangle (a yle of length 3) T suh that the threeedges onneting T to G− T are independent then every edge of T is a freeedge (i.e., α-free edge if its olour is α).



284 J.L. Fouquet, H. Thuillier, J.M. Vanherpe and A.P. WojdaRemark 4.4. Following the notations of De�nition 4.3, if xy is an α-freeedge of G, the αβ-yle of G ontaining xy gives the αβ-yle of G′ ontainingthe β-oloured edge x′y′ of the graph G′ obtained from G by redution ofthe α-free edge xy. The others αβ-yles, if they exist, are idential in Gand in G′.
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{x, x′, y, y′}) and suppose that the omponent of G ontaining {x, x′, y, y′} isdistint from K4. Let z (respetively z′) be the neighbour of x′ (respetively
y′) distint from x and y. We note that z 6= y′ and z′ 6= x′. Sine anyomponent of G is 2-onneted, z and z′ are distint verties. The subgraph
D indued on {x, x′, y, y′} is usually alled a diamond. The edge xy is alledthe entral edge of D. Clearly, the entral edge of D and the two edges ofthe 2-ut onneting D to the rest of G have the same olour. A diamondwhose entral edge have olour α is said to be an α-diamond. There are twoases aording to zz′ /∈ E(G) (Case 1) or zz′ ∈ E(G) (Case 2). In Case 1,an α-diamond is said to be an α-free diamond. The 3-edge oloured ubigraph G′ on (n− 4) verties obtained from G by deleting D and its inidentedges and adding the edge zz′ oloured with α is said to be obtained from
G by redution of an α-free diamond. See Figure 4.
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u′ are distint verties (reall that every omponent of G is 2-onneted).Aording to the olour β or γ of the edge zz′, there are two sub-ases,Case 2.1 and Case 2.2. We onsider the ubi graph G′ on (n − 2) vertiesobtained from G by deleting the edge zz′ and replaing the paths uzx′ and
u′z′y′ by ux′ and u′y′ respetively (we shall say that G′ is obtained from Gby edge suppression of zz′). In Case 2.1 we onsider the 3-edge olouring Φ1of G′ suh that Φ1(xy) = Φ1(x

′u) = Φ1(y
′u′) = γ, Φ1(xx′) = Φ1(yy′) = α,

Φ1(x
′y) = Φ1(xy′) = β and Φ1(e) = Φ(e) for any other edge. See Figure 5.
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β γ βFigure 6. α-diamond and edge suppression � Case 2.2.4.2. Choosing a strong mathing as a transversalAs pointed out before, we are interested in �nding a partiular transversalof Φ(α, β) when α and β are any two distint olours of a 3-edge olouring.Theorem 4.7. Let G be a 3-edge oloured ubi graph and let Φ be a 3-edgeolouring of G. Let α and β be any two distint olours of Φ. Then thereexists a strong mathing SMG(α, β) interseting every yle belonging to the
2-fator Φ(α, β).
P roof. It is easily seen that the theorem is true for graphs with at most 8verties. Let us suppose that Theorem 4.7 is false and let G be a ounterex-ample having the smallest number of verties. Without loss of generality wean suppose that G is onneted. Let α and β be two olours suh that thereis no strong mathing of G interseting every αβ-yle of G.Claim 1. G has neither an α-free edge nor a β-free edge.
P roof. By symmetry between α and β it su�es to prove that G has no
α-free edge. Suppose, for ontradition, that xy is an α-free edge of G. Byminimality of G, the graph G′ obtained from G by redution of the α-freeedge xy has a strong mathing SMG′(α, β) interseting every αβ-yle of
G′. By Remark 4.4, every αβ-yle C of G′ is either an αβ-yle of G oris obtained by redution from an αβ-yle of G ontaining xy. In the lastase, let {e} = SMG′(α, β) ∩ E(C). If e 6= x′y′ then SMG′(α, β) is a strongmathing SMG(α, β) of G. If e = x′y′ (oloured with β) then either x′′ and
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y′′ are not inident to SMG′(α, β), and we put

SMG(α, β) = SMG′(α, β) − x′y′ + xyor else
• in Case 1, aording to x′′ or y′′ is inident to SMG′(α, β) we put

SMG(α, β) = SMG′(α, β) − x′y′ + yy′or we put
SMG(α, β) = SMG′(α, β) − x′y′ + xx′

• in Case 2 we put SMG(α, β) = SMG′(α, β) − x′y′ + yy′.In any ase, it is a routine matter to hek that SMG(α, β) so obtained is astrong mathing interseting every αβ-yle of G, a ontradition. Thus, Ghas no α-free edge.Claim 2. G has neither an α-diamond nor a β-diamond.
P roof. By symmetry between α and β it su�es to prove that G has no
α-diamond. By minimality of G, the graph G′ obtained from G by redutionof an α-free diamond D (Case 1, see Figure 4) or by redution of the edge zz′(Cases 2.1 and 2.2, see Figures 5 and 6 has a strong mathing SMG′(α, β)interseting every αβ-yle C of G′.
• In Case 1, if zz′ 6∈ SMG′(α, β) then set SMG(α, β) = SMG′(α, β) elseset SMG(α, β) = SMG′(α, β) − zz′ + xy.
• In Cases 2.1 and 2.2, let uv be the edge of SMG′(α, β) ontained in the

αβ-yle of G′ using {x, x′, y, y′} set SMG(α, β) = SMG′(α, β)−uv+xy.By Remark 4.6 SMG(α, β) is a strong mathing of G interseting every αβ-yle of G, a ontradition. Thus, G has no α-diamond.Claim 3. Every αβ-yle C of G of length ≥ 6 has no hord.
P roof. Suppose that xy is a hord of C. Let x′ and x′′ be the neighboursof x distint from y, and let y′ and y′′ be the neighbours of y distint from
x. We suppose that the verties x′, x, x′′, y′, y, y′′ appear in that order on C.Let x

′
− and x

′′+ be respetively the neighbours of x′ and x′′ on C distint



288 J.L. Fouquet, H. Thuillier, J.M. Vanherpe and A.P. Wojdafrom x. We wish to prove that x′x′′ and y′y′′ are not edges. Suppose, forontradition, that x′x′′ is an edge of G. By Claim 1 the verties x
′
−, x

′′+and y are not three distint verties (otherwise x′x and x′′x will be α-freeor β-free edges). Sine C has length at least 6, verties x
′
− and x

′′+ aredistint. Without loss of generality we an suppose that x
′′+ = y, that is

y′ = x′′, and that Φ(x′x) = β. Sine x
′
− 6= y, the set {x

′
−, x′, x, x′′, y, y′′}indues an α-diamond, ontrary to Claim 2. Thus, x′x′′ is not an edge,and, by symmetry, y′y′′ is not an edge. Let G′ be the ubi graph obtainedfrom G by deleting x and y and their inident edges and by adding theedges x′x′′ and y′y′′. The yle C gives a yle C ′ in G′ of length |C| − 2.By olouring the edges of C ′ by the olours α and β, and no hange forthe other edges (whih are edges of G), we obtain a 3-edge olouring of

G′. Let SMG′(α, β) be a strong mathing interseting every αβ-yle of G′.Let us assume that SMG′(α, β) intersets eah αβ-yle of G′ exatly one.Whenever neither x′x′′ nor y′y′′ are ontained in SMG′(α, β)∩C then we set
SMG(α, β) = SMG′(α, β). Otherwise, let uv be the edge of SMG′(α, β)∩C,then we set SMG(α, β) = SMG′(α, β) − x′x′′ + x′x when uv = x′x′′ or weset SMG(α, β) = SMG′(α, β)−y′y′′ +y′y when uv = y′y′′. Then SMG(α, β)intersets every αβ-yle of G, a ontradition. Hene, xy is not a hordof C.Claim 4. Every αβ-yle C of G is a yle of length 4.
P roof. Let C = (a0, a1, a2, . . . , a2k−1) be an αβ-yle of length 2k ≥ 6. Letus onsider respetively a′0, a

′

1, a
′

2, . . . , a
′

2k−1
the neighbours of a0, a1, a2, . . . ,

a2k−1 not belonging to C. For every i ∈ {0, . . . , 2k − 1} the edge aia
′

iis oloured with the third olour γ and hene a′0, a
′

1, a
′

2, . . . , a
′

2k−1
are dis-tint verties. By Claim 3, ai−1ai+2 is not an edge. Sine aiai+1 is neitheran α-free nor a β-free edge, a′ia

′

i+1 ∈ E(G). Thus, {a′0, a′1, a′2, . . . , a′2k−1
}indues an αβ-yle. Hene, G is the union of two hordless αβ-yles

C = (a0, a1, a2, . . . , a2k−1) and C ′ = (a′0, a
′

1, a
′

2, . . . , a
′

2k−1
) onneted by themathing {a0a

′

0, a1a
′

1, a2a
′

2, . . ., a2k−1a
′

2k−1
}. Sine k ≥ 3, it is lear that wean hoose an edge e on C and an edge e′ on C ′ suh that {e, e′} is a strongmathing, a ontradition. Thus, k = 2 and C is a yle of length 4.Hene the 2-fator Φ(α, β) is redued to a set of squares. By Theorem 2.2

G would have a Jaeger's mathing M = MB + MR suh that the strongmathing MB (or indi�erently MR) intersets every square, a ontradition.Thus, G does not exist and Theorem 4.7 is proved.



On Odd and Semi-Odd Linear Partitions of ... 289Corollary 4.8. Let G be a ubi graph. Then G an be fatored into twoodd linear forests L = (LB , LR) suh that(i) Eah path in LB has odd length at most 3,(ii) Eah path in LR has odd length at least 3if and only if χ′(G) = 3.
P roof. Assume that G has an odd linear partition L = (LB , LR) withthese properties. As in Theorem 4.1 we get immediately a 3-edge olouring.Conversely, let α and β be two olours of a 3-edge olouring Φ of Gand let SMG(α, β) be a minimal strong mathing interseting eah yle of
Φ(α, β). If Γ denotes the set of edges oloured by γ then LB = Γ+SMG(α, β)is a set of odd paths of length at most 3. While LR = Φ(α, β) \ SMG(α, β)is a set of odd paths of length at least 3 (reall that, G being simple, everybioloured yle has length at least 4). Hene, (LB, LR) is an odd linearpartition satisfying onditions (i) and (ii).4.3. Unioloured transversalIn this setion we derive from Theorem 4.7 a result on unioloured transver-sals of the 2-fators indued by any 3 edge-olouring of a ubi graph withhromati index 3. Let us �rst state a useful Lemma (folklore).Lemma 4.9. Let G = (V,E) be a multi-graph then it is always possibleto give an orientation to its edge set in suh a way that for any vertex v
|d+(v) − d−(v)| ≤ 1 (where d+(v) denotes as usual the outdegree of v and
d−(v) its indegree).
P roof. Without loss of generality we onsider that G is onneted. Adda mathing of extra edges between verties of odd degrees in G (sine thereis an even number of verties with odd degree) in order to get an eule-rian graph G′. We orient the edges of G′ following an eulerian tour. It isa routine matter to hek that the orientation indued in G satis�es ourrequirement.Theorem 4.10. Let G be a ubi 3-edge olourable graph and let Φ be a
3-edge olouring of G. Let α and β be any two distint olours of Φ and let γbe the third olour. Then there exists a set Fα of α-edges interseting everyyle belonging to the 2-fator Φ(α, β) suh that the set Fα together with the
γ-edges has no yle.
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P roof. We know by Theorem 4.7 that there exists a strong mathing
SMG(α, β) interseting every yle of the 2-fator Φ(α, β).Let A be the set of α-edges of SMG(α, β) while B is the set of remaining
β-edges of SMG(α, β). We may assume that B is not empty, for otherwisewe set Fα = A and we are done.Let A′ be the set of α-edges of G whih are inident to an edge of B.For eah edge e ∈ A′, the attahment vertex of e will be the vertex inidentto the edge of B. B being a strong mathing this attahment vertex is wellde�ned. We intend to de�ne Fα as a subset of A∪A′ whih ontains A andthus we fous on the αγ-yles of G whose α-edges belong to A ∪ A′.Claim. An αγ-yle of G whose all α-edges belong to A∪A′ annot ontainany edge of A.
P roof. Let C = x0y0x1y1 . . . xkyk be an αγ-yle of G whose all α-edgesbelong to A ∪ A′. Assume that xiyi are α-edges while yixi+1 are γ-edges(i being taken modulo k + 1). Let us suppose that x0y0 ∈ A. The edge
x1y1 is ertainly in A′, otherwise A should not be a strong mathing. Theattahement vertex of x1y1 annot be x1 otherwise A ∪ B is not a strongmathing. Considering now x2y2, we an say that this edge is not in A(otherwise A∪B is not a strong mathing) and its attahment vertex annotbe x2 (otherwise B is not a strong mathing). Running through the set of α-edges xiyi we an show in the same way that these edges are in A′ and theirattahment verties are ertainly the yi's. We obtain thus a ontraditionwith xkyk sine this edge is in A′ and its attahment vertex is yk whih isimpossible sine yk is adjaent to x0.Let C be the set of γ-edges whih are inident to an edge of A′ and H be thesubgraph of G whose edge-set is A′∪C, obviously the onneted omponentsof H are paths or yles. By Claim every αγ-yle of G whose all α-edgesbelong to A ∪ A′ is also a yle of H.Every edge of B is inident in G to a onneted omponent of H, thuswe de�ne an auxiliary graph, namely H ′, in the following way: the vertiesof H ′ are the onneted omponents of H while it's edge-set is B. Sineevery onneted omponent of H ontains at least one edge of A′ there is noisolated vertex in H ′.Using Lemma 4.9, we an �nd an orientation of the edges of H ′ suhthat every vertex of H ′ of degree at least 2 has an in-going edge and anout-going edge.



On Odd and Semi-Odd Linear Partitions of ... 291For any edge e of B we denote o(e) the endpoint of e with respet of theprevious orientation of H ′ and we de�ne an injetive mapping f : B −→ A′:given an edge e of B, f(e) is the α-edge of A′ whose attahment vertex is
o(e).We set Fα = A ∪ {f(e)|e ∈ B}. Observe that Fα is a set of α-edges.Sine A ∪ B overs all αβ-yles of G and sine e and f(e) belong to thesame αβ-yle of G, Fα overs all αβ-yles of G. Moreover, suppose that
C is an αγ-yle of G whose α-edges are members of Fα. Then C is an αγ-yle of H and has a vertex of degree at least 2 in H ′. But now, the α-edgeof C whih is inident to an out-going edge of C does not belong to Fα,a ontradition.Remark 4.11. It is possible to derive a linear time algorithm for the on-strution of the unioloured transversal Fα of Theorem 4.10 one the 3-edgeolouring Φ and the strong mathing desribed in Theorem 4.7 are given.Referenes[1℄ J. Akiyama, G. Exoo and F. Harary, Covering and paking in graphs III, Cyliand Ayli Invariant, Math. Slovaa 30 (1980) 405�417.[2℄ R.E.L. Aldred and N.C. Wormald, More on the linear k-arboriity of regulargraphs, Australas. J. Combin. 18 (1998) 97�104.[3℄ J.C. Bermond, J.L. Fouquet, M. Habib and B. Perohe, On linear k-arboriity,Disrete Math. 52 (1984) 123�132.[4℄ J.A. Bondy, Balaned olourings and the four olor onjeture, Pro. Am.Math. So. 33 (1972) 241�244.[5℄ M. Habib and B. Perohe, La k-arboriité linéaire des arbres, Annals of DisreteMath. 17 (1983) 307�317.[6℄ F. Harary, Covering and Paking in graphs I, Ann. New York Aad. Si. 175(1970) 198�205.[7℄ I. Holyer, The NP-ompleteness of edge oloring, SIAM J. Comput. 10 (1981)718�720.[8℄ F. Jaeger, Etude de quelques invariants et problèmes d'existene en théoriedes graphes, Thèse d'Etat, IMAG Grenoble, 1976. Pro 10th Ann. Symp. onTheory of Computing (1978) 216�226.[9℄ C. Thomassen, Two-oloring the edges of a ubi graph suh that eahmonohromati omponent is a path of length at most 5, J. Combin. Theory(B) 75 (1999) 100�109.
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