ON ODD AND SEMI-ODD LINEAR PARTITIONS OF CUBIC GRAPHS

Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe
L.I.F.O., Faculté des Sciences, B.P. 6759
Université d'Orléans
45067 Orléans Cedex 2, France
AND
Adam P. Wojda
Wydziat Matematyki Stosowanej
Zaktad Matematyki Dyskretnej
AGH, Al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract

A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and $l a(G)$ is the minimum number of linear forests in a linear partition.

In this paper we consider linear partitions of cubic simple graphs for which it is well known that $l a(G)=2$. A linear partition $L=$ $\left(L_{B}, L_{R}\right)$ is said to be odd whenever each path of $L_{B} \cup L_{R}$ has odd length and semi-odd whenever each path of L_{B} (or each path of L_{R}) has odd length.

In [2] Aldred and Wormald showed that a cubic graph G is 3edge colourable if and only if G has an odd linear partition. We give here more precise results and we study moreover relationships between semi-odd linear partitions and perfect matchings.

Keywords: Cubic graph, linear arboricity, strong matching, edgecolouring.
2000 Mathematics Subject Classification: Primary 05C70;
Secondary 05C38.

1. Introduction

As usually, for any undirected graph G, we denote by $V(G)$ the set of its vertices and by $E(G)$ the set of its edges and we consider, as usual, that $|V(G)|=n$ and $|E(G)|=m$. If $F \subseteq E(G)$ then $V(F)$ is the set of vertices which are incident with some edges of F. For any path P we shall denote by $l(P)$ the length of P, that is to say the number of its edges. A vertex of a path P distinct from an end-vertex is said to be an internal vertex. If u and v are vertices of a path P then $P[u, v]$ denotes the subpath of P whose end-vertices are u and v. A strong matching C in a graph G is a matching C such that there is no edge of $E(G)$ connecting any two edges of C, or, equivalently, such that C is the edge-set of the subgraph of G induced by the vertex-set $V(C)$. A 2-factor of G is a spanning subgraph whose components are cycles. If every cycle of a 2-factor has an even length then we say that this 2-factor is an even 2-factor.

A linear- k-forest is a forest whose components are paths of length at most k. The linear- k-arboricity of an undirected graph G is defined in [5] as the minimum number of linear- k-forests needed to partition the set $E(G)$. The linear- k-arboricity is a natural refinement of the linear-arboricity introduced by Harary [6] (corresponding to linear- $(n-1)$-arboricity). The linear- k-arboricity will be denoted by $l a_{k}(G)$.

Let $\chi^{\prime}(G)$ be the classical chromatic index (minimum edge colouring) and let $l a(G)$ be the linear arboricity of G. We clearly have:

$$
l a(G)=l a_{n-1}(G) \leq l a_{n-2}(G) \leq \cdots \leq l a_{2}(G) \leq l a_{1}(G)=\chi^{\prime}(G)
$$

We know by Vizing's Theorem [10] that $l a_{1}(G) \leq \Delta(G)+1$ (where $\Delta(G)$ is the maximum degree of G). For any $k \geq 2$, we have (lower bound comes from [5] and upper bound from [3]):

$$
\max \left(\left\lceil\frac{\Delta(G)}{2}\right\rceil,\left\lceil\frac{m(k+1)}{k n}\right\rceil\right) \leq l a_{k}(G) \leq \Delta(G)
$$

In this paper we consider cubic graphs, that is to say finite simple 3-regular graphs. Since in a cubic graph G we have $3 n=2 m$, by the previous formula we obtain:

$$
l a_{2}(G)=3 \text { and for any } k \geq 3, \quad 2 \leq l a_{k}(G) \leq 3
$$

The cubic graph obtained from two disjoint cycles of length 3 connected by a perfect matching is denoted by $P R_{3}$. It was shown by Akiyama, Exoo and Harary [1] that $l a(G)=2$ when G is cubic. In [3] Bermond et al. conjectured that $l a_{5}(G)=2$. Thomassen [9] proved the conjecture, which is best possible since, in view of $l a_{4}\left(K_{3,3}\right)=3$ and $l a_{4}\left(P R_{3}\right)=3,5$ cannot be replaced by 4 .

A partition of $E(G)$ into two linear forests L_{B} and L_{R} will be called a linear partition and we shall denote this linear partition $L=\left(L_{B}, L_{R}\right)$. An odd linear forest is a linear forest in which each path is a path of odd length. A semi-odd linear partition is a linear partition $L=L_{B} \cup L_{R}$ such that L_{B} or L_{R} is an odd linear forest. An odd linear partition is a partition of $E(G)$ into two odd linear forests. For $i \in\{B, R\}$ let $\omega\left(L_{i}\right)$ be the number of components (or maximal paths) of L_{i}. Since every vertex of G is either end-vertex of a maximal path of L_{B} or end-vertex of a maximal path of L_{R}, we have

$$
\omega\left(L_{B}\right)+\omega\left(L_{R}\right)=\frac{|V(G)|}{2} .
$$

2. Jaeger's Graphs

A special class of cubic graphs introduced by F. Jaeger will be considered.
Definition 2.1. Let us call a Jaeger's matching a perfect matching which is the union of two strong matchings. A cubic graph G is a Jaeger's graph whenever G contains a Jaeger's matching.

In his thesis [8] Jaeger called these cubic graphs equitable and pointed out that the improper 2 -colouring $\{B, R\}$ of their vertices induced by a perfect matching M union of two disjoint strong matchings M_{B} and M_{R} leads to a balanced colouring as defined by Bondy [4].

When G is a cubic graph having a 2 -factor of C_{4} 's, say \mathcal{F}, we consider the auxiliary 2-regular graph G^{\prime} defined as follows: every C_{4} of \mathcal{F} is replaced with its complementary graph (which is a $2 K_{2}$).

Theorem 2.2. Let G be a connected cubic graph having a 2 -factor of squares, say \mathcal{F} and let p be the number of cycles of G^{\prime}. Then there are 2^{p-1} Jaeger's matchings in G which intersect \mathcal{F}.

Proof. We first prove that there are at most two types of Jaeger's matchings in G.

Claim. Let $M=M_{B} \cup M_{R}$ be a Jaeger's matching of G. If M intersects \mathcal{F} then every C_{4} of \mathcal{F} contains an edge of M_{B} and an edge of M_{R}.

Proof of Claim. Recall that M_{B} and M_{R} are strong matchings. Without loss of generality we may assume that there is some edge say $a b$ of some C_{4} in \mathcal{F}, say $a b c d$ which belongs to M_{B}. Since M is a perfect matching and M_{B} is a strong matching the vertices c and d must be the endpoint of some edge(s) of M_{R}. Since M_{R} is a strong matching we have $c d \in M_{R}$. Let $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ be another C_{4} of \mathcal{F} which is connected to $a b c d$ by some edge say $a a^{\prime}$. The edge $a a^{\prime}$ is not an edge of M (M is a matching) and since a^{\prime} must be an endpoint of an edge of M_{R}, M_{R} intersects $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$. Consequently, G being connected we have that M_{B} and M_{R} intersect all cycles of \mathcal{F}.

It follows that a Jaeger's matching of G is either contained into \mathcal{F} or disjoint from \mathcal{F}.

We now establish a correspondence between the orientations of the cycles of G^{\prime} and the Jaeger's matchings of G which intersect \mathcal{F}.

Let us give an orientation of the cycles of G^{\prime}. Going back now to G, each C_{4} of \mathcal{F} has an edge connected to two out-going edges and an edge connected to two in-going edges. Let M_{B} be the set of edges connected to two out-going edges over all the C_{4} 's of \mathcal{F} while M_{R} contains the edges connected to two in-going edges. It's an easy task to check that $M_{B} \cup M_{R}$ is a Jaeger's matching of G.

Conversely let us consider a Jaeger's matching $M=M_{B} \cup M_{R}$ of G which intersects \mathcal{F}. By the above Claim, each C_{4} of \mathcal{F} contains an edge of M_{B} and an edge of M_{R}. For any C_{4} of \mathcal{F} and for any vertex v of this C_{4} we denote e_{v} the edge of $E(G) \backslash E(\mathcal{F})$ that is adjacent to v. We know that v is an endpoint of an edge in M_{B} or in M_{R}. We give an orientation to the edge e_{v} in such a way that e_{v} is an out-going edge (that is v is the origin) if and only if v is endpoint of an edge of M_{B}. Since every edge of $E(G) \backslash E(\mathcal{F})$ is connected to two C_{4} 's of \mathcal{F} those edges are oriented twice; more precisely: when $a a^{\prime}$ is an edge connecting two cycles of \mathcal{F}, say $a b c d$ and $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$, if $a a^{\prime}=e_{a}$ is an out-going edge for the cycle $a b c d$ then $a a^{\prime}=e_{a^{\prime}}$ must be an in-going edge for $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ for otherwise M_{B} would not be a strong matching. Consequently the given orientation of all edges $e_{v}(v \in V(G))$ extends to an orientation of the cycles of G^{\prime}.

We have 2^{p} possible orientations of the cycles of G^{\prime}. A given orientation of each cycle of G^{\prime} and the opposite orientations of these cycles yield to
the same partition of M, consequently, there are 2^{p-1} Jaeger's matchings intersecting the 2 -factor \mathcal{F} of G. This finishes the proof.

By Theorem 2.2 every cubic graph having a 2 -factor of squares has at least one Jaeger's matching. Hence we conclude this subsection with the following corollaries.

Corollary 2.3. A cubic graph having a 2-factor of squares is a Jaeger's graph.

Furthermore, we can derive from Theorem 2.2 a simple linear time algorithm for finding a Jaeger's matching in a connected cubic graph which have a 2 factor of squares.

It can be noticed that every cubic graph with a perfect matching M can be transformed into a Jaeger's graph by using the transformation (square extension) depicted in Figure 1 on each edge of M. Indeed, the resulting graph has a 2 -factor of squares and we can apply Theorem 2.2.

Figure 1. Square extension
Corollary 2.4. A connected cubic graph is 3 -edge colourable if and only if there is a perfect matching N such that the cubic graph obtained in using a square extension on each edge of N leads to a Jaeger's graph having an odd number (at least 3) of Jaeger's matchings.

Proof. Let G be a cubic graph such that G^{\prime}, obtained from G by square extensions on each edge of N, has an odd number of Jaeger's matchings. Let \mathcal{F} be the 2 -factor of C_{4} 's of G^{\prime} obtained by these square extensions. Since G^{\prime} has an odd number of Jaeger's matchings, Theorem 2.2 says that there is a Jaeger's matching M of G^{\prime} which avoids all the edges of \mathcal{F}. Clearly, there is a bijection between M and the 2-factor $E(G) \backslash N$. Since M is the union of the strong matchings M_{B} and M_{R}, going back to G the edges of $M_{B} \cup M_{R}$ give rise to an even 2-factor $E(G) \backslash N$ of G which, together with N, leads to a 3 -edge colouring of G.

Conversely, assume that G is 3-edge colourable. Then extending each edge of a given colour in a 3-edge colouring of G leads to a graph G^{\prime} which has a 2 -factor of squares. We can choose the square of G^{\prime} extending an edge of G of the given colour in such a way that any of the two other colours induces a strong matching. Indeed, the edges of the two other colours give rise to a Jaeger's matching in G^{\prime} avoiding every square so constructed and Theorem 2.2 applies.

3. Semi-Odd Linear Partitions

We are interested by relationships between perfect matchings and semi-odd linear partitions and we generalize a theorem of Aldred and Wormald [2]. We will come again on their result in the next section.

Theorem 3.1. Let G be a cubic graph having a perfect matching M. Then there exists a set $F \subseteq E(G)-M$ intersecting each cycle of the 2-factor $G-M$ such that $F+M$ is an odd linear forest.

Proof. Let $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be the cycles of $G-M$ (with $k \geq 1$). Clearly if e is an edge of C_{1} then the set $M \cup\{e\}$ induces an odd linear forest of G (made of a path of length 3 and a matching). Let us suppose that $k \geq 2$ and let i such that $1 \leq i<k$. We suppose that for every j with $1 \leq j \leq i$ we have chosen an edge e_{j} of C_{j} such that $F_{i}+M$ is an odd linear forest (with $\left.F_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}\right)$. Let $x y$ be an edge of C_{i+1}. If $F_{i}+M+x y$ contains a cycle then $x y$ belongs to this cycle. Thus, $F_{i}+M$ contains a path P having x and y as end vertices. Let z be the neighbour of y on C_{i+1} distinct from x. Then, $F_{i}+M+y z$ contains no cycle (if it contains a cycle, then $F_{i}+M$ contains a path P^{\prime} having y and z as end vertices, contradicting the existence of P). So, C_{i+1} contains an edge, say e_{i+1}, such that $F_{i}+e_{i+1}+M$ is an odd linear forest. Let us denote $F_{i}+e_{i+1}$ by F_{i+1}. The results follows by induction.

Definition 3.2. For every odd path $P=\left[a_{0}, a_{1}, \ldots, a_{2 l+1}\right]$, with $l \geq 0$, we say that the edges $\left\{a_{0} a_{1}, a_{2} a_{3}, \ldots, a_{2 l} a_{2 l+1}\right\}$ are at even distance from the end vertices of P.

Theorem 3.3. A cubic graph has a perfect matching if and only if it has a semi-odd linear partition.

Proof. If M is a perfect matching of a cubic graph G then by Theorem 3.1 the graph G has a set of edges F intersecting every cycle of the 2 -factor $G \backslash M$ such that $F+M$ is an odd linear forest. Set $L_{B}=F+M$ and $L_{R}=G-F-M$ Then, $L=\left(L_{B}, L_{R}\right)$ is a semi-odd linear partition.

Conversely, if the graph has a semi-odd linear partition $L=\left(L_{B}, L_{R}\right)$, we suppose without loss of generality that L_{B} is an odd linear forest. Let M be the set of edges of L_{B} at even distance from the end vertices of the maximal paths of L_{B}. It is a routine matter to check that M is a matching. Since L_{B} is a spanning forest, M is a perfect matching.

For any cubic graph G having a perfect matching (or, equivalently, a 2 -factor) we denote by $\rho(G)$ the minimum number of even maximal paths appearing in a semi-odd linear partition, and we denote by $o(G)$ the minimum number of odd cycles appearing in a 2 -factor of G (we note that $o(G)$ is an even number). If $\rho(L)$ denotes the number of even maximal paths of a semi-odd linear partition $L=\left(L_{B}, L_{R}\right)$, then $\rho(G)=\operatorname{Min}\{\rho(L) \mid L$ is a semi-odd linear partition of $G\}$.

Theorem 3.4. Let G be a cubic graph having a 2-factor (or, equivalently, a perfect matching). Then $\rho(G)=o(G)$.

Proof. Let us suppose that G has a 2 -factor. Let $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be a 2 -factor of G having $o(G)$ odd cycles, and let M be the perfect matching associated with this 2 -factor. By Theorem 3.1 we can choose a set of edges F (one by cycle) such that $F+M$ is an odd linear forest L_{B}. The set $E(G)-E\left(L_{B}\right)$ induces a linear forest L_{R} and we consider the semi-odd linear partition $L=\left(L_{B}, L_{R}\right)$. The number $\rho(L)$ of even maximal paths of L_{R} is equal to the number $o(G)$ of odd cycles in $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$. Thus, $\rho(G) \leq o(G)$.

Now let $L=\left(L_{B}, L_{R}\right)$ be a semi-odd linear partition such that L_{B} is an odd linear forest. As in Proof of Theorem 3.3, let M be the perfect matching made of the edges of L_{B} at even distance from the end vertices of the maximal paths of L_{B}, and let $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be the 2 -factor $G-M$. Every path of L_{B} of length ≥ 3 intersects this 2 -factor and we see that $E\left(L_{B}\right) \cap\left(E\left(C_{1}\right) \cup E\left(C_{2}\right) \cdots \cup E\left(C_{k}\right)\right)$ is a matching. Now consider any cycle C_{i} of this 2-factor. Clearly, $E\left(L_{B}\right)$ intersects $E\left(C_{i}\right)$. Let $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}=$ $E\left(L_{B}\right) \cap E\left(C_{i}\right)$. We see that $E\left(C_{i}\right)-E\left(L_{B}\right)$ induces a set of elementary paths $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ which are precisely maximal paths of L_{R}. If $P_{1}, P_{2}, \ldots, P_{r}$ have odd lengths then $\left|E\left(C_{i}\right)\right|=r+\sum_{j=1}^{j=r} l\left(P_{j}\right)$ is even. Thus, if C_{i} is an
odd cycle then at least one of these paths has an even length. Then, $\rho(L)$ is greater or equal to the number of odd cycle in $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$. Hence, $\rho(L) \geq o(G)$. By choosing L such that $\rho(L)=\rho(G)$, we obtain $\rho(G) \geq o(G)$.

4. Odd Linear Partitions

Let G be a cubic graph. Assume that $L=\left(L_{B}, L_{R}\right)$ is a linear partition of its edge set. By colouring alternately the edges of the maximal paths in L_{B} with α and γ and those of L_{R} with β and δ, we get a 4 -edge colouring.

We note that a cubic graph G can be factored into two odd linear forests if and only if $\rho(G)=0$ and that G has an even 2-factor (or, equivalently, is 3-edge colourable) if and only if $o(G)=0$. So, the following result of Aldred and Wormald can be obtained as a corollary of Theorem 3.4.

Theorem 4.1 [2]. Let G be a cubic graph. Then the following properties are equivalent:

1. G is 3 -edge colourable (that is $\chi^{\prime}(G)=3$).
2. G can be factored into two odd linear forests.

Recall here a sketch of their proof. Suppose that $L=\left(L_{B}, L_{R}\right)$ is an odd linear partition of G. A proper 3-edge colouring of G is obtained by colouring the edges of the paths in L_{B} alternately with α and γ so that each path in L_{B} has its first and last edges coloured with α, and by colouring the edges of the paths in L_{R} alternately with β and γ so that each path in L_{R} has its first and last edges coloured with β. Conversely, if G is 3 -edge colourable, let us consider a proper 3 -edge colouring using α, β and γ as colours. Pick an edge from each cycle of the even 2 -factor $\Phi(\alpha, \beta)$ induced by the colours α and β, and let F be the set of these picked edges. The subgraph of G formed by F and the perfect matching R induced by colour γ has connected components which are odd paths or even cycles. Each even cycle is broken by choosing an edge coloured with γ (let F^{\prime} be this set of edges). Then $L_{R}=R+F-F^{\prime}$ is a set of odd paths as well as $L_{B}=\Phi(\alpha, \beta)-F+F^{\prime}$, leading to an odd linear partition $L=\left(L_{B}, L_{R}\right)$ of G.

The remarkable point here is that F is a minimal transversal of the cycles of $\Phi(\alpha, \beta)$ where each edge of F has been chosen at random. Their strategy is a greedy strategy with simple accommodations in order to broke some even cycles. In our proof of Theorem 3.4 we choose randomly an edge
on a cycle, and if this edge is not acceptable we choose an incident edge. This strategy is intermediate between the greedy strategy of Aldred and Wormald and the strategy that we will develop in the next subsections. We shall see that when suitably choosing edges in F we extend their result.

4.1. Reductions

Assume that G is a cubic 3-edge colourable graph and let Φ be a 3-edge colouring of G. For any edge e, let us denote the colour of e by $\Phi(e)$. Let α and β be any two distinct colours of Φ and let γ be the third colour. The subset of the edges of G coloured with α or with β induces an even 2-factor. In the following the 2 -factor induced by any two distinct colours α and β will be denoted by $\Phi(\alpha, \beta)$. Any cycle of $\Phi(\alpha, \beta)$ is said to be an $\alpha \beta$-cycle. Since α and β are arbitrary colours it is clear that the connected components of a 3 -edge colourable cubic graph are 2 -connected subgraphs. We need some specific definitions for this section.

Definition 4.2. Let α and β be any two distinct colours of Φ. In the following $S M_{G}(\alpha, \beta)$ will denote a strong matching of G intersecting every $\alpha \beta$-cycle (when such a strong matching exists).

Definition 4.3. Let α and β be any two distinct colours of Φ. Let $x y$ be an edge of G and let x^{\prime} and $x^{\prime \prime}$ (respectively y^{\prime} and $y^{\prime \prime}$) be the (distinct) neighbours of x (of y, respectively) distinct from y (respectively x) such that $x^{\prime} \neq y^{\prime \prime}$ or $x^{\prime \prime} \neq y^{\prime}$ and suppose that $x^{\prime} y^{\prime}$ and $x^{\prime \prime} y^{\prime \prime}$ are not edges of G. Let us suppose that $\Phi(x y)=\alpha, \Phi\left(x x^{\prime}\right)=\Phi\left(y y^{\prime}\right)=\beta$ and $\Phi\left(x x^{\prime \prime}\right)=\Phi\left(y y^{\prime \prime}\right)=\gamma$. If $x^{\prime} \neq y^{\prime \prime}$ or $x^{\prime \prime} \neq y^{\prime}$ then the edge $x y$ is said to be an α-free edge. Note that edge $x^{\prime} y^{\prime \prime}$ (respectively $x^{\prime \prime} y^{\prime}$) may exist, and in this case $\Phi\left(x^{\prime} y^{\prime \prime}\right)=\alpha$ (respectively $\Phi\left(x^{\prime \prime} y^{\prime}\right)=\alpha$). We notice that, without loss of generality, there are two cases:

- Case 1. $x^{\prime} \neq y^{\prime \prime}$ and $x^{\prime \prime} \neq y^{\prime}$.
- Case 2. $x^{\prime}=y^{\prime \prime}$ and $x^{\prime \prime} \neq y^{\prime}$.

The 3-edge coloured cubic graph G^{\prime} on $(n-2)$ vertices obtained from G by deleting vertices x and y and their incident edges and adding the edges $x^{\prime} y^{\prime}$ and $x^{\prime \prime} y^{\prime \prime}$, coloured respectively by β and γ, is said to be obtained from G by reduction of an α-free edge. Situations are depicted on Figures 2 and 3. Clearly, if G contains a triangle (a cycle of length 3) T such that the three edges connecting T to $G-T$ are independent then every edge of T is a free edge (i.e., α-free edge if its colour is α).

Remark 4.4. Following the notations of Definition 4.3, if $x y$ is an α-free edge of G, the $\alpha \beta$-cycle of G containing $x y$ gives the $\alpha \beta$-cycle of G^{\prime} containing the β-coloured edge $x^{\prime} y^{\prime}$ of the graph G^{\prime} obtained from G by reduction of the α-free edge $x y$. The others $\alpha \beta$-cycles, if they exist, are identical in G and in G^{\prime}.

Figure 2. α-free edge and reduction - Case 1.

Figure 3. α-free edge and reduction — Case 2.
Definition 4.5. Following the notations of Definition 4.3, let us suppose that $x^{\prime}=y^{\prime \prime}$ and $x^{\prime \prime}=y^{\prime}$ (that is $x y$ is a chord of the subgraph induced on $\left.\left\{x, x^{\prime}, y, y^{\prime}\right\}\right)$ and suppose that the component of G containing $\left\{x, x^{\prime}, y, y^{\prime}\right\}$ is distinct from K_{4}. Let z (respectively z^{\prime}) be the neighbour of x^{\prime} (respectively y^{\prime}) distinct from x and y. We note that $z \neq y^{\prime}$ and $z^{\prime} \neq x^{\prime}$. Since any component of G is 2 -connected, z and z^{\prime} are distinct vertices. The subgraph D induced on $\left\{x, x^{\prime}, y, y^{\prime}\right\}$ is usually called a diamond. The edge $x y$ is called the central edge of D. Clearly, the central edge of D and the two edges of the 2 -cut connecting D to the rest of G have the same colour. A diamond whose central edge have colour α is said to be an α-diamond. There are two cases according to $z z^{\prime} \notin E(G)$ (Case 1) or $z z^{\prime} \in E(G)$ (Case 2). In Case 1, an α-diamond is said to be an α-free diamond. The 3-edge coloured cubic graph G^{\prime} on $(n-4)$ vertices obtained from G by deleting D and its incident edges and adding the edge $z z^{\prime}$ coloured with α is said to be obtained from G by reduction of an α-free diamond. See Figure 4.

Figure 4. α-free diamond and reduction - Case 1 .
In Case 2 we denote by u (respectively u^{\prime}) the neighbour of z (respectively z^{\prime}) distinct from x^{\prime} and z^{\prime} (respectively y^{\prime} and z). We note that u and u^{\prime} are distinct vertices (recall that every component of G is 2 -connected). According to the colour β or γ of the edge $z z^{\prime}$, there are two sub-cases, Case 2.1 and Case 2.2. We consider the cubic graph G^{\prime} on $(n-2)$ vertices obtained from G by deleting the edge $z z^{\prime}$ and replacing the paths $u z x^{\prime}$ and $u^{\prime} z^{\prime} y^{\prime}$ by $u x^{\prime}$ and $u^{\prime} y^{\prime}$ respectively (we shall say that G^{\prime} is obtained from G by edge suppression of $z z^{\prime}$). In Case 2.1 we consider the 3-edge colouring Φ_{1} of G^{\prime} such that $\Phi_{1}(x y)=\Phi_{1}\left(x^{\prime} u\right)=\Phi_{1}\left(y^{\prime} u^{\prime}\right)=\gamma, \Phi_{1}\left(x x^{\prime}\right)=\Phi_{1}\left(y y^{\prime}\right)=\alpha$, $\Phi_{1}\left(x^{\prime} y\right)=\Phi_{1}\left(x y^{\prime}\right)=\beta$ and $\Phi_{1}(e)=\Phi(e)$ for any other edge. See Figure 5.

Figure 5. α-diamond and edge suppression - Case 2.1.
In Case 2.2, we have the 3 -edge colouring Φ_{2} of G^{\prime} such that $\Phi_{2}(x y)=$ $\Phi_{2}\left(x^{\prime} u\right)=\Phi_{2}\left(y^{\prime} u^{\prime}\right)=\beta, \Phi_{2}\left(x x^{\prime}\right)=\Phi_{2}\left(y y^{\prime}\right)=\alpha, \Phi_{2}\left(x^{\prime} y\right)=\Phi_{2}\left(x y^{\prime}\right)=\Phi$ and $\Phi_{2}(e)=\Phi(e)$ for any other edge. See Figure 6.

Remark 4.6. Following notations of Definition 4.5, if $x y$ is the central edge of an α-free diamond D (Case 1) then an $\alpha \beta$-cycle containing $x y$ gives an $\alpha \beta$-cycle of G^{\prime} containing the α-coloured edge $z z^{\prime}$ of the graph G^{\prime} obtained from G by reduction of the α-free diamond D. If D is an α-diamond that is not α-free (Case 2), then in Case 2.1 the $\alpha \beta$-cycle of G containing $x y$ gives the $\alpha \beta$-cycle $\left\{x, x^{\prime}, y, y^{\prime}\right\}$ of G^{\prime} and in Case 2.2 an $\alpha \beta$-cycle containing $x y$
$(\alpha$-coloured in $G)$ gives an $\alpha \beta$-cycle of G^{\prime} containing $x y$ (β-coloured in G^{\prime}). The others $\alpha \beta$-cycles, if there exist, are identical in G and in G^{\prime}.

Figure 6. α-diamond and edge suppression - Case 2.2.

4.2. Choosing a strong matching as a transversal

As pointed out before, we are interested in finding a particular transversal of $\Phi(\alpha, \beta)$ when α and β are any two distinct colours of a 3-edge colouring.

Theorem 4.7. Let G be a 3-edge coloured cubic graph and let Φ be a 3-edge colouring of G. Let α and β be any two distinct colours of Φ. Then there exists a strong matching $S M_{G}(\alpha, \beta)$ intersecting every cycle belonging to the 2 -factor $\Phi(\alpha, \beta)$.

Proof. It is easily seen that the theorem is true for graphs with at most 8 vertices. Let us suppose that Theorem 4.7 is false and let G be a counterexample having the smallest number of vertices. Without loss of generality we can suppose that G is connected. Let α and β be two colours such that there is no strong matching of G intersecting every $\alpha \beta$-cycle of G.

Claim 1. G has neither an α-free edge nor a β-free edge.
Proof. By symmetry between α and β it suffices to prove that G has no α-free edge. Suppose, for contradiction, that $x y$ is an α-free edge of G. By minimality of G, the graph G^{\prime} obtained from G by reduction of the α-free edge $x y$ has a strong matching $S M_{G^{\prime}}(\alpha, \beta)$ intersecting every $\alpha \beta$-cycle of G^{\prime}. By Remark 4.4, every $\alpha \beta$-cycle C of G^{\prime} is either an $\alpha \beta$-cycle of G or is obtained by reduction from an $\alpha \beta$-cycle of G containing $x y$. In the last case, let $\{e\}=S M_{G^{\prime}}(\alpha, \beta) \cap E(C)$. If $e \neq x^{\prime} y^{\prime}$ then $S M_{G^{\prime}}(\alpha, \beta)$ is a strong matching $S M_{G}(\alpha, \beta)$ of G. If $e=x^{\prime} y^{\prime}$ (coloured with β) then either $x^{\prime \prime}$ and
$y^{\prime \prime}$ are not incident to $S M_{G^{\prime}}(\alpha, \beta)$, and we put

$$
S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)-x^{\prime} y^{\prime}+x y
$$

or else

- in Case 1, according to $x^{\prime \prime}$ or $y^{\prime \prime}$ is incident to $S M_{G^{\prime}}(\alpha, \beta)$ we put

$$
S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)-x^{\prime} y^{\prime}+y y^{\prime}
$$

or we put

$$
S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)-x^{\prime} y^{\prime}+x x^{\prime}
$$

- in Case 2 we put $S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)-x^{\prime} y^{\prime}+y y^{\prime}$.

In any case, it is a routine matter to check that $S M_{G}(\alpha, \beta)$ so obtained is a strong matching intersecting every $\alpha \beta$-cycle of G, a contradiction. Thus, G has no α-free edge.

Claim 2. G has neither an α-diamond nor a β-diamond.
Proof. By symmetry between α and β it suffices to prove that G has no α-diamond. By minimality of G, the graph G^{\prime} obtained from G by reduction of an α-free diamond D (Case 1, see Figure 4) or by reduction of the edge $z z^{\prime}$ (Cases 2.1 and 2.2, see Figures 5 and 6 has a strong matching $S M_{G^{\prime}}(\alpha, \beta)$ intersecting every $\alpha \beta$-cycle C of G^{\prime}.

- In Case 1, if $z z^{\prime} \notin S M_{G^{\prime}}(\alpha, \beta)$ then set $S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)$ else set $S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)-z z^{\prime}+x y$.
- In Cases 2.1 and 2.2, let $u v$ be the edge of $S M_{G^{\prime}}(\alpha, \beta)$ contained in the $\alpha \beta$-cycle of G^{\prime} using $\left\{x, x^{\prime}, y, y^{\prime}\right\}$ set $S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)-u v+x y$.

By Remark 4.6 $S M_{G}(\alpha, \beta)$ is a strong matching of G intersecting every $\alpha \beta$ cycle of G, a contradiction. Thus, G has no α-diamond.

Claim 3. Every $\alpha \beta$-cycle C of G of length ≥ 6 has no chord.
Proof. Suppose that $x y$ is a chord of C. Let x^{\prime} and $x^{\prime \prime}$ be the neighbours of x distinct from y, and let y^{\prime} and $y^{\prime \prime}$ be the neighbours of y distinct from x. We suppose that the vertices $x^{\prime}, x, x^{\prime \prime}, y^{\prime}, y, y^{\prime \prime}$ appear in that order on C. Let $x^{\prime-}$ and $x^{\prime \prime+}$ be respectively the neighbours of x^{\prime} and $x^{\prime \prime}$ on C distinct
from x. We wish to prove that $x^{\prime} x^{\prime \prime}$ and $y^{\prime} y^{\prime \prime}$ are not edges. Suppose, for contradiction, that $x^{\prime} x^{\prime \prime}$ is an edge of G. By Claim 1 the vertices $x^{\prime-}, x^{\prime \prime+}$ and y are not three distinct vertices (otherwise $x^{\prime} x$ and $x^{\prime \prime} x$ will be α-free or β-free edges). Since C has length at least 6 , vertices $x^{\prime-}$ and $x^{\prime \prime+}$ are distinct. Without loss of generality we can suppose that $x^{\prime \prime+}=y$, that is $y^{\prime}=x^{\prime \prime}$, and that $\Phi\left(x^{\prime} x\right)=\beta$. Since $x^{\prime-} \neq y$, the set $\left\{x^{\prime-}, x^{\prime}, x, x^{\prime \prime}, y, y^{\prime \prime}\right\}$ induces an α-diamond, contrary to Claim 2. Thus, $x^{\prime} x^{\prime \prime}$ is not an edge, and, by symmetry, $y^{\prime} y^{\prime \prime}$ is not an edge. Let G^{\prime} be the cubic graph obtained from G by deleting x and y and their incident edges and by adding the edges $x^{\prime} x^{\prime \prime}$ and $y^{\prime} y^{\prime \prime}$. The cycle C gives a cycle C^{\prime} in G^{\prime} of length $|C|-2$. By colouring the edges of C^{\prime} by the colours α and β, and no change for the other edges (which are edges of G), we obtain a 3 -edge colouring of G^{\prime}. Let $S M_{G^{\prime}}(\alpha, \beta)$ be a strong matching intersecting every $\alpha \beta$-cycle of G^{\prime}. Let us assume that $S M_{G^{\prime}}(\alpha, \beta)$ intersects each $\alpha \beta$-cycle of G^{\prime} exactly once. Whenever neither $x^{\prime} x^{\prime \prime}$ nor $y^{\prime} y^{\prime \prime}$ are contained in $S M_{G^{\prime}}(\alpha, \beta) \cap C$ then we set $S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)$. Otherwise, let $u v$ be the edge of $S M_{G^{\prime}}(\alpha, \beta) \cap C$, then we set $S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)-x^{\prime} x^{\prime \prime}+x^{\prime} x$ when $u v=x^{\prime} x^{\prime \prime}$ or we set $S M_{G}(\alpha, \beta)=S M_{G^{\prime}}(\alpha, \beta)-y^{\prime} y^{\prime \prime}+y^{\prime} y$ when $u v=y^{\prime} y^{\prime \prime}$. Then $S M_{G}(\alpha, \beta)$ intersects every $\alpha \beta$-cycle of G, a contradiction. Hence, $x y$ is not a chord of C.

Claim 4. Every $\alpha \beta$-cycle C of G is a cycle of length 4.
Proof. Let $C=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{2 k-1}\right)$ be an $\alpha \beta$-cycle of length $2 k \geq 6$. Let us consider respectively $a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{2 k-1}^{\prime}$ the neighbours of $a_{0}, a_{1}, a_{2}, \ldots$, $a_{2 k-1}$ not belonging to C. For every $i \in\{0, \ldots, 2 k-1\}$ the edge $a_{i} a_{i}^{\prime}$ is coloured with the third colour γ and hence $a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{2 k-1}^{\prime}$ are distinct vertices. By Claim 3, $a_{i-1} a_{i+2}$ is not an edge. Since $a_{i} a_{i+1}$ is neither an α-free nor a β-free edge, $a_{i}^{\prime} a_{i+1}^{\prime} \in E(G)$. Thus, $\left\{a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{2 k-1}^{\prime}\right\}$ induces an $\alpha \beta$-cycle. Hence, G is the union of two chordless $\alpha \beta$-cycles $C=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{2 k-1}\right)$ and $C^{\prime}=\left(a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{2 k-1}^{\prime}\right)$ connected by the matching $\left\{a_{0} a_{0}^{\prime}, a_{1} a_{1}^{\prime}, a_{2} a_{2}^{\prime}, \ldots, a_{2 k-1} a_{2 k-1}^{\prime}\right\}$. Since $k \geq 3$, it is clear that we can choose an edge e on C and an edge e^{\prime} on C^{\prime} such that $\left\{e, e^{\prime}\right\}$ is a strong matching, a contradiction. Thus, $k=2$ and C is a cycle of length 4 .

Hence the 2 -factor $\Phi(\alpha, \beta)$ is reduced to a set of squares. By Theorem 2.2 G would have a Jaeger's matching $M=M_{B}+M_{R}$ such that the strong matching M_{B} (or indifferently M_{R}) intersects every square, a contradiction. Thus, G does not exist and Theorem 4.7 is proved.

Corollary 4.8. Let G be a cubic graph. Then G can be factored into two odd linear forests $L=\left(L_{B}, L_{R}\right)$ such that
(i) Each path in L_{B} has odd length at most 3,
(ii) Each path in L_{R} has odd length at least 3
if and only if $\chi^{\prime}(G)=3$.
Proof. Assume that G has an odd linear partition $L=\left(L_{B}, L_{R}\right)$ with these properties. As in Theorem 4.1 we get immediately a 3-edge colouring.

Conversely, let α and β be two colours of a 3-edge colouring Φ of G and let $S M_{G}(\alpha, \beta)$ be a minimal strong matching intersecting each cycle of $\Phi(\alpha, \beta)$. If Γ denotes the set of edges coloured by γ then $L_{B}=\Gamma+S M_{G}(\alpha, \beta)$ is a set of odd paths of length at most 3 . While $L_{R}=\Phi(\alpha, \beta) \backslash S M_{G}(\alpha, \beta)$ is a set of odd paths of length at least 3 (recall that, G being simple, every bicoloured cycle has length at least 4). Hence, $\left(L_{B}, L_{R}\right)$ is an odd linear partition satisfying conditions (i) and (ii).

4.3. Unicoloured transversal

In this section we derive from Theorem 4.7 a result on unicoloured transversals of the 2-factors induced by any 3 edge-colouring of a cubic graph with chromatic index 3 . Let us first state a useful Lemma (folklore).

Lemma 4.9. Let $G=(V, E)$ be a multi-graph then it is always possible to give an orientation to its edge set in such a way that for any vertex v $\left|d^{+}(v)-d^{-}(v)\right| \leq 1$ (where $d^{+}(v)$ denotes as usual the outdegree of v and $d^{-}(v)$ its indegree).

Proof. Without loss of generality we consider that G is connected. Add a matching of extra edges between vertices of odd degrees in G (since there is an even number of vertices with odd degree) in order to get an eulerian graph G^{\prime}. We orient the edges of G^{\prime} following an eulerian tour. It is a routine matter to check that the orientation induced in G satisfies our requirement.

Theorem 4.10. Let G be a cubic 3 -edge colourable graph and let Φ be a 3 -edge colouring of G. Let α and β be any two distinct colours of Φ and let γ be the third colour. Then there exists a set F_{α} of α-edges intersecting every cycle belonging to the 2 -factor $\Phi(\alpha, \beta)$ such that the set F_{α} together with the γ-edges has no cycle.

Proof. We know by Theorem 4.7 that there exists a strong matching $S M_{G}(\alpha, \beta)$ intersecting every cycle of the 2 -factor $\Phi(\alpha, \beta)$.

Let A be the set of α-edges of $S M_{G}(\alpha, \beta)$ while B is the set of remaining β-edges of $S M_{G}(\alpha, \beta)$. We may assume that B is not empty, for otherwise we set $F_{\alpha}=A$ and we are done.

Let A^{\prime} be the set of α-edges of G which are incident to an edge of B. For each edge $e \in A^{\prime}$, the attachment vertex of e will be the vertex incident to the edge of $B . B$ being a strong matching this attachment vertex is well defined. We intend to define F_{α} as a subset of $A \cup A^{\prime}$ which contains A and thus we focus on the $\alpha \gamma$-cycles of G whose α-edges belong to $A \cup A^{\prime}$.

Claim. An $\alpha \gamma$-cycle of G whose all α-edges belong to $A \cup A^{\prime}$ cannot contain any edge of A.

Proof. Let $\mathcal{C}=x_{0} y_{0} x_{1} y_{1} \ldots x_{k} y_{k}$ be an $\alpha \gamma$-cycle of G whose all α-edges belong to $A \cup A^{\prime}$. Assume that $x_{i} y_{i}$ are α-edges while $y_{i} x_{i+1}$ are γ-edges (i being taken modulo $k+1$). Let us suppose that $x_{0} y_{0} \in A$. The edge $x_{1} y_{1}$ is certainly in A^{\prime}, otherwise A should not be a strong matching. The attachement vertex of $x_{1} y_{1}$ cannot be x_{1} otherwise $A \cup B$ is not a strong matching. Considering now $x_{2} y_{2}$, we can say that this edge is not in A (otherwise $A \cup B$ is not a strong matching) and its attachment vertex cannot be x_{2} (otherwise B is not a strong matching). Running through the set of α edges $x_{i} y_{i}$ we can show in the same way that these edges are in A^{\prime} and their attachment vertices are certainly the y_{i} 's. We obtain thus a contradiction with $x_{k} y_{k}$ since this edge is in A^{\prime} and its attachment vertex is y_{k} which is impossible since y_{k} is adjacent to x_{0}.

Let C be the set of γ-edges which are incident to an edge of A^{\prime} and H be the subgraph of G whose edge-set is $A^{\prime} \cup C$, obviously the connected components of H are paths or cycles. By Claim every $\alpha \gamma$-cycle of G whose all α-edges belong to $A \cup A^{\prime}$ is also a cycle of H.

Every edge of B is incident in G to a connected component of H, thus we define an auxiliary graph, namely H^{\prime}, in the following way: the vertices of H^{\prime} are the connected components of H while it's edge-set is B. Since every connected component of H contains at least one edge of A^{\prime} there is no isolated vertex in H^{\prime}.

Using Lemma 4.9, we can find an orientation of the edges of H^{\prime} such that every vertex of H^{\prime} of degree at least 2 has an in-going edge and an out-going edge.

For any edge e of B we denote $o(e)$ the endpoint of e with respect of the previous orientation of H^{\prime} and we define an injective mapping $f: B \longrightarrow A^{\prime}$: given an edge e of $B, f(e)$ is the α-edge of A^{\prime} whose attachment vertex is $o(e)$.

We set $F_{\alpha}=A \cup\{f(e) \mid e \in B\}$. Observe that F_{α} is a set of α-edges. Since $A \cup B$ covers all $\alpha \beta$-cycles of G and since e and $f(e)$ belong to the same $\alpha \beta$-cycle of G, F_{α} covers all $\alpha \beta$-cycles of G. Moreover, suppose that \mathcal{C} is an $\alpha \gamma$-cycle of G whose α-edges are members of F_{α}. Then \mathcal{C} is an $\alpha \gamma$ cycle of H and has a vertex of degree at least 2 in H^{\prime}. But now, the α-edge of \mathcal{C} which is incident to an out-going edge of \mathcal{C} does not belong to F_{α}, a contradiction.

Remark 4.11. It is possible to derive a linear time algorithm for the construction of the unicoloured transversal F_{α} of Theorem 4.10 once the 3 -edge colouring Φ and the strong matching described in Theorem 4.7 are given.

References

[1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III, Cyclic and Acyclic Invariant, Math. Slovaca 30 (1980) 405-417.
[2] R.E.L. Aldred and N.C. Wormald, More on the linear k-arboricity of regular graphs, Australas. J. Combin. 18 (1998) 97-104.
[3] J.C. Bermond, J.L. Fouquet, M. Habib and B. Peroche, On linear k-arboricity, Discrete Math. 52 (1984) 123-132.
[4] J.A. Bondy, Balanced colourings and the four color conjecture, Proc. Am. Math. Soc. 33 (1972) 241-244.
[5] M. Habib and B. Peroche, La k-arboricité linéaire des arbres, Annals of Discrete Math. 17 (1983) 307-317.
[6] F. Harary, Covering and Packing in graphs I, Ann. New York Acad. Sci. 175 (1970) 198-205.
[7] I. Holyer, The NP-completeness of edge coloring, SIAM J. Comput. 10 (1981) 718-720.
[8] F. Jaeger, Etude de quelques invariants et problèmes d'existence en théorie des graphes, Thèse d'Etat, IMAG Grenoble, 1976. Proc 10th Ann. Symp. on Theory of Computing (1978) 216-226.
[9] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theory (B) $\mathbf{7 5}$ (1999) 100-109.
[10] V.G. Vizing, On an estimate of the chromatic class of p-graph, Diskrete Analiz 3 (1964) 25-30.

Received 3 December 2007
Revised 13 June 2008
Accepted 13 June 2008

