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Abstract

A linear forestis a graph whose connected components are chordless
paths. A linear partition of a graph G is a partition of its edge set into
linear forests and la(G) is the minimum number of linear forests in a
linear partition.

In this paper we consider linear partitions of cubic simple graphs
for which it is well known that la(G) = 2. A linear partition L =
(Lp,LR) is said to be odd whenever each path of Lg U Lr has odd
length and semi-odd whenever each path of Lp (or each path of Lg)
has odd length.

In [2] Aldred and Wormald showed that a cubic graph G is 3-
edge colourable if and only if G has an odd linear partition. We give
here more precise results and we study moreover relationships between
semi-odd linear partitions and perfect matchings.

Keywords: Cubic graph, linear arboricity, strong matching, edge-
colouring.

2000 Mathematics Subject Classification: Primary 05C70;
Secondary 05C38.



276 J.L. FouQueT, H. THUILLIER, J.M. VANHERPE AND A.P. WoJDA

1. INTRODUCTION

As usually, for any undirected graph G, we denote by V(G) the set of its
vertices and by E(G) the set of its edges and we consider, as usual, that
[V(G)] =n and |E(G)| =m. If F C E(G) then V(F) is the set of vertices
which are incident with some edges of F'. For any path P we shall denote
by [(P) the length of P, that is to say the number of its edges. A vertex of
a path P distinct from an end-vertex is said to be an internal vertex. If u
and v are vertices of a path P then P[u,v] denotes the subpath of P whose
end-vertices are u and v. A strong matching C' in a graph G is a matching
C such that there is no edge of E(G) connecting any two edges of C, or,
equivalently, such that C is the edge-set of the subgraph of G induced by the
vertex-set V(C'). A 2-factor of G is a spanning subgraph whose components
are cycles. If every cycle of a 2-factor has an even length then we say that
this 2-factor is an even 2-factor.

A linear-k-forest is a forest whose components are paths of length at
most k. The linear-k-arboricity of an undirected graph G is defined in [5] as
the minimum number of linear-k-forests needed to partition the set E(G).
The linear-k-arboricity is a natural refinement of the linear-arboricity in-
troduced by Harary [6] (corresponding to linear-(n — 1)-arboricity). The
linear-k-arboricity will be denoted by lag(G).

Let X (G) be the classical chromatic index (minimum edge colouring)
and let [a(G) be the linear arboricity of G. We clearly have:

/

la(G) = lan—1(G) < lapn—2(G) < --- <laz(GQ) <lai1(G) = x (G).

We know by Vizing’s Theorem [10] that la;(G) < A(G) + 1 (where A(G)
is the maximum degree of G). For any k > 2, we have (lower bound comes
from [5] and upper bound from [3]):

max GA(G)W , {m(k i UD < lap(G) < A(G).

2 kn

In this paper we consider cubic graphs, that is to say finite simple 3-regular
graphs. Since in a cubic graph G we have 3n = 2m, by the previous formula
we obtain:

lag(G) =3 and for any k >3, 2 < lax(G) < 3.
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The cubic graph obtained from two disjoint cycles of length 3 connected by
a perfect matching is denoted by PR3. It was shown by Akiyama, Exoo and
Harary [1] that la(G) = 2 when G is cubic. In [3] Bermond et al. conjectured
that las(G) = 2. Thomassen [9] proved the conjecture, which is best possible
since, in view of la4(K33) = 3 and las(PR3) = 3, 5 cannot be replaced by 4.

A partition of E(G) into two linear forests Lp and Lp will be called
a linear partition and we shall denote this linear partition L = (Lp,LR) .
An odd linear forest is a linear forest in which each path is a path of odd
length. A semi-odd linear partition is a linear partition L = Lg U Lg such
that Lg or Lg is an odd linear forest. An odd linear partition is a partition
of E(G) into two odd linear forests. For ¢ € {B, R} let w(L;) be the number
of components (or maximal paths) of L;. Since every vertex of G is either
end-vertex of a maximal path of Lg or end-vertex of a maximal path of Lg,
we have

(L) +w(Lp) = |V(2G)| .

2. JAEGER’S GRAPHS

A special class of cubic graphs introduced by F. Jaeger will be considered.

Definition 2.1. Let us call a Jaeger’s matching a perfect matching which
is the union of two strong matchings. A cubic graph G is a Jaeger’s graph
whenever G contains a Jaeger’s matching.

In his thesis 8] Jaeger called these cubic graphs equitable and pointed out
that the improper 2-colouring {B, R} of their vertices induced by a perfect
matching M union of two disjoint strong matchings Mp and Mg leads to a
balanced colouring as defined by Bondy [4].

When G is a cubic graph having a 2-factor of Cy’s, say F, we consider
the auxiliary 2-regular graph G’ defined as follows: every Cy4 of F is replaced
with its complementary graph (which is a 2K5).

Theorem 2.2. Let G be a connected cubic graph having a 2-factor of squares,
say F and let p be the number of cycles of G'. Then there are 2°~! Jaeger’s
matchings in G which intersect F.

Proof. We first prove that there are at most two types of Jaeger’s match-
ings in G.
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Claim. Let M = MpU Mg, be a Jaeger’s matching of G. If M intersects F
then every Cy of F contains an edge of Mp and an edge of Mpg.

Proof of Claim. Recall that Mp and Mg are strong matchings. With-
out loss of generality we may assume that there is some edge say ab of some
Cy in F, say abed which belongs to Mp. Since M is a perfect matching and
Mg is a strong matching the vertices ¢ and d must be the endpoint of some
edge(s) of Mp. Since My, is a strong matching we have ¢d € Mg. Let a’'t'dd
be another Cy of F which is connected to abed by some edge say aa’. The
edge aa’ is not an edge of M (M is a matching) and since @’ must be an
endpoint of an edge of Mg, Mp intersects a’b'c’d’. Consequently, G being
connected we have that Mp and Mg intersect all cycles of F. [ |

It follows that a Jaeger’s matching of G is either contained into F or disjoint
from F.

We now establish a correspondence between the orientations of the cycles
of G' and the Jaeger’s matchings of G which intersect F.

Let us give an orientation of the cycles of G’. Going back now to G,
each Cy of F has an edge connected to two out-going edges and an edge
connected to two in-going edges. Let Mp be the set of edges connected
to two out-going edges over all the Cy’s of F while Mg contains the edges
connected to two in-going edges. It’s an easy task to check that Mp U Mg
is a Jaeger’s matching of G.

Conversely let us consider a Jaeger’s matching M = Mp U Mg of G
which intersects F. By the above Claim, each Cy of F contains an edge of
Mp and an edge of Mg. For any C4 of F and for any vertex v of this Cy we
denote e, the edge of E(G)\E(F) that is adjacent to v. We know that v is
an endpoint of an edge in Mp or in M. We give an orientation to the edge
€, in such a way that e, is an out-going edge (that is v is the origin) if and
only if v is endpoint of an edge of Mp. Since every edge of E(G)\E(F) is
connected to two Cy’s of F those edges are oriented twice; more precisely:
when ad’ is an edge connecting two cycles of F, say abed and da'b/dd’, if
aa’ = eq is an out-going edge for the cycle abed then aa’ = e, must be an
in-going edge for a’b/d’d’ for otherwise Mp would not be a strong matching.
Consequently the given orientation of all edges e, (v € V(G)) extends to an
orientation of the cycles of G'.

We have 2P possible orientations of the cycles of G’. A given orienta-
tion of each cycle of G’ and the opposite orientations of these cycles yield to
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the same partition of M, consequently, there are 2P~! Jaeger’s matchings
intersecting the 2-factor F of G. This finishes the proof. [

By Theorem 2.2 every cubic graph having a 2-factor of squares has at least
one Jaeger’s matching. Hence we conclude this subsection with the following
corollaries.

Corollary 2.3. A cubic graph having a 2-factor of squares is a Jaeger’s
graph.

Furthermore, we can derive from Theorem 2.2 a simple linear time algorithm
for finding a Jaeger’s matching in a connected cubic graph which have a 2-
factor of squares.

It can be noticed that every cubic graph with a perfect matching M can
be transformed into a Jaeger’s graph by using the transformation (square
extension) depicted in Figure 1 on each edge of M. Indeed, the resulting
graph has a 2-factor of squares and we can apply Theorem 2.2.

Figure 1. Square extension

Corollary 2.4. A connected cubic graph is 3-edge colourable if and only if
there is a perfect matching N such that the cubic graph obtained in using a
square extension on each edge of N leads to a Jaeger’s graph having an odd
number (at least 3) of Jaeger’s matchings.

Proof. Let G be a cubic graph such that G’, obtained from G by square
extensions on each edge of N, has an odd number of Jaeger’s matchings. Let
F be the 2-factor of Cy’s of G’ obtained by these square extensions. Since
G’ has an odd number of Jaeger’s matchings, Theorem 2.2 says that there is
a Jaeger’s matching M of G’ which avoids all the edges of F. Clearly, there
is a bijection between M and the 2-factor E(G)\ N. Since M is the union of
the strong matchings Mp and Mg, going back to G the edges of Mp U Mg
give rise to an even 2-factor E(G) \ N of G which, together with N, leads to
a 3-edge colouring of G.
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Conversely, assume that G is 3-edge colourable. Then extending each edge
of a given colour in a 3-edge colouring of G leads to a graph G’ which has a
2-factor of squares. We can choose the square of G’ extending an edge of G
of the given colour in such a way that any of the two other colours induces
a strong matching. Indeed, the edges of the two other colours give rise to a
Jaeger’s matching in G’ avoiding every square so constructed and Theorem
2.2 applies. [ |

3. SEMI-ODD LINEAR PARTITIONS

We are interested by relationships between perfect matchings and semi-odd
linear partitions and we generalize a theorem of Aldred and Wormald |2].
We will come again on their result in the next section.

Theorem 3.1. Let G be a cubic graph having a perfect matching M. Then
there exists a set F C FE(G) — M intersecting each cycle of the 2-factor
G — M such that F + M is an odd linear forest.

Proof. Let {C1,C5,...,Ck} be the cycles of G — M (with & > 1). Clearly
if e is an edge of C; then the set M U {e} induces an odd linear forest of G
(made of a path of length 3 and a matching). Let us suppose that £ > 2 and
let ¢ such that 1 <17 < k. We suppose that for every j with 1 < 7 <4 we
have chosen an edge e; of C; such that F; + M is an odd linear forest (with
F; ={e1,ea,...,¢;}). Let xy be an edge of C;11. If F; + M + zy contains a
cycle then zy belongs to this cycle. Thus, F; + M contains a path P having
2 and y as end vertices. Let z be the neighbour of y on Cj1; distinct from
x. Then, F; + M + yz contains no cycle (if it contains a cycle, then F; + M
contains a path P’ having y and z as end vertices, contradicting the existence
of P). So, Cj;+1 contains an edge, say e;11, such that F; + ;11 + M is an
odd linear forest. Let us denote F; + e;11 by F;i1. The results follows by
induction. [ |

Definition 3.2. For every odd path P = [ag,ay,...,a+1], with I > 0, we
say that the edges {aga1,azas,...,aga9.1} are at even distance from the
end vertices of P.

Theorem 3.3. A cubic graph has a perfect matching if and only if it has a
semi-odd linear partition.
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Proof. If M is a perfect matching of a cubic graph G then by Theorem
3.1 the graph G has a set of edges F' intersecting every cycle of the 2-factor
G \ M such that F'+ M is an odd linear forest. Set Lp = F + M and
Lr=G—F — M Then, L = (Lp,Lg) is a semi-odd linear partition.
Conversely, if the graph has a semi-odd linear partition L = (Lp, Lg) ,
we suppose without loss of generality that Lp is an odd linear forest. Let
M be the set of edges of Lp at even distance from the end vertices of the
maximal paths of Lp. It is a routine matter to check that M is a matching.
Since Lp is a spanning forest, M is a perfect matching. [ |

For any cubic graph G having a perfect matching (or, equivalently, a 2-factor)
we denote by p(G) the minimum number of even maximal paths appearing
in a semi-odd linear partition, and we denote by o(G) the minimum number
of odd cycles appearing in a 2-factor of G (we note that o(G) is an even
number). If p(L) denotes the number of even maximal paths of a semi-odd
linear partition L = (Lp,Lg) , then p(G) = Min{p(L)| L is a semi-odd
linear partition of G}.

Theorem 3.4. Let G be a cubic graph having a 2-factor (or, equivalently, a
perfect matching). Then p(G) = o(G).

Proof. Let us suppose that G has a 2-factor. Let {C1,C5,...,C} be a
2-factor of G having o(G) odd cycles, and let M be the perfect matching
associated with this 2-factor. By Theorem 3.1 we can choose a set of edges
F (one by cycle) such that F' + M is an odd linear forest Lp. The set
E(G) — E(Lp) induces a linear forest Lr and we consider the semi-odd
linear partition L = (Lp,Lg) . The number p(L) of even maximal paths
of Lp is equal to the number o(G) of odd cycles in {C1,Cs,...,Cy}. Thus,
p(G) < o(G).

Now let L = (Lp,Lg) be a semi-odd linear partition such that Lp is
an odd linear forest. As in Proof of Theorem 3.3, let M be the perfect
matching made of the edges of Lp at even distance from the end vertices of
the maximal paths of Lp, and let {C1,C5,...,Ck} be the 2-factor G — M.
Every path of Lp of length > 3 intersects this 2-factor and we see that
E(Lg)N(E(C1)UE(Cy)---UE(Cy)) is a matching. Now consider any cycle
C; of this 2-factor. Clearly, F(Lp) intersects E(C;). Let {e1,e2,...,e,} =
E(Lp)NE(C;). We see that E(C;)—E(Lp) induces a set of elementary paths
{P1, P, ..., P} which are precisely maximal paths of L. If Py, Ps,..., P,
have odd lengths then |E(C;)| = r + 3421 I[(F;) is even. Thus, if C; is an
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odd cycle then at least one of these paths has an even length. Then, p(L)
is greater or equal to the number of odd cycle in {C1,C5,...,Ck}. Hence,
p(L) > o(G). By choosing L such that p(L) = p(G), we obtain p(G) > o(G).

|

4. ODD LINEAR PARTITIONS

Let G be a cubic graph. Assume that L = (Lp, Lg) is a linear partition of
its edge set. By colouring alternately the edges of the maximal paths in Lp
with « and v and those of Ly with 8 and §, we get a 4-edge colouring.

We note that a cubic graph G can be factored into two odd linear forests
if and only if p(G) = 0 and that G has an even 2-factor (or, equivalently, is
3-edge colourable) if and only if o(G) = 0. So, the following result of Aldred
and Wormald can be obtained as a corollary of Theorem 3.4.

Theorem 4.1 [2]|. Let G be a cubic graph. Then the following properties
are equivalent:

1. G is 3-edge colourable (that is X'(G) = 3).

2. G can be factored into two odd linear forests.

Recall here a sketch of their proof. Suppose that L = (Lp, Lg) is an odd
linear partition of G. A proper 3-edge colouring of G is obtained by colouring
the edges of the paths in Lp alternately with o and ~ so that each path in
Lp has its first and last edges coloured with «, and by colouring the edges of
the paths in Ly alternately with 8 and « so that each path in Ly has its first
and last edges coloured with . Conversely, if G is 3-edge colourable, let us
consider a proper 3-edge colouring using «, § and v as colours. Pick an edge
from each cycle of the even 2-factor ®(a, ) induced by the colours « and £3,
and let F' be the set of these picked edges. The subgraph of G formed by F
and the perfect matching R induced by colour v has connected components
which are odd paths or even cycles. Each even cycle is broken by choosing
an edge coloured with ~ (let F” be this set of edges). Then Lg = R+ F — F’
is a set of odd paths as well as Lg = ®(«, 3) — F + F’, leading to an odd
linear partition L = (Lp, Lg) of G.

The remarkable point here is that F' is a minimal transversal of the
cycles of ®(«, ) where each edge of F' has been chosen at random. Their
strategy is a greedy strategy with simple accommodations in order to broke
some even cycles. In our proof of Theorem 3.4 we choose randomly an edge
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on a cycle, and if this edge is not acceptable we choose an incident edge. This
strategy is intermediate between the greedy strategy of Aldred and Wormald
and the strategy that we will develop in the next subsections. We shall see
that when suitably choosing edges in F' we extend their result.

4.1. Reductions

Assume that G is a cubic 3-edge colourable graph and let ® be a 3-edge
colouring of G. For any edge e, let us denote the colour of e by ®(e). Let
and 3 be any two distinct colours of @ and let v be the third colour. The
subset of the edges of G coloured with a or with 3 induces an even 2-factor.
In the following the 2-factor induced by any two distinct colours a and G will
be denoted by ®(«, 3). Any cycle of ®(a, 3) is said to be an af-cycle. Since
« and 3 are arbitrary colours it is clear that the connected components of
a 3-edge colourable cubic graph are 2-connected subgraphs. We need some
specific definitions for this section.

Definition 4.2. Let o and § be any two distinct colours of ®. In the
following SMg(a, 8) will denote a strong matching of G intersecting every
af-cycle (when such a strong matching exists).

Definition 4.3. Let « and § be any two distinct colours of ®. Let xy be
an edge of G and let 2’ and z” (respectively 3’ and y”) be the (distinct)
neighbours of x (of y, respectively) distinct from y (respectively x) such that
x' # y" or " # ¢/ and suppose that z'y’ and z”y” are not edges of G. Let us
suppose that ®(zy) = «, ®(za’) = ®(yy') = B and ®(z2”) = ¢(yy") = 7.
If ' # 4" or 2" # 3/ then the edge xy is said to be an a-free edge. Note
that edge x'y” (respectively z”y’) may exist, and in this case ®(2'y") = «
(respectively ®(x"y’) = o). We notice that, without loss of generality, there

are two cases:

e Case 1. 2/ #y" and 2" £ y/.

e Case 2. 2/ =y" and 2" # v/.
The 3-edge coloured cubic graph G’ on (n — 2) vertices obtained from G by
deleting vertices o and y and their incident edges and adding the edges x'y’
and z”y”, coloured respectively by 3 and =, is said to be obtained from G
by reduction of an a-free edge. Situations are depicted on Figures 2 and 3.
Clearly, if G contains a triangle (a cycle of length 3) T such that the three
edges connecting T to G — T are independent then every edge of T' is a free
edge (i.e., a-free edge if its colour is «).
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Remark 4.4. Following the notations of Definition 4.3, if xzy is an a-free
edge of G, the aS-cycle of G containing zy gives the a3-cycle of G’ containing
the -coloured edge x'y’ of the graph G’ obtained from G by reduction of
the a-free edge zy. The others af-cycles, if they exist, are identical in G
and in G'.

) X y X X X
—> |p v
y By v y y y

Figure 2. a-free edge and reduction  Case 1.

Figure 3. a-free edge and reduction  Case 2.

Definition 4.5. Following the notations of Definition 4.3, let us suppose
that 2’ = 3" and 2”7 = ¢/ (that is xy is a chord of the subgraph induced on
{z,2',y,vy'}) and suppose that the component of G containing {z,z’,y,y'} is
distinct from Ky. Let z (respectively 2) be the neighbour of 2’ (respectively
y') distinct from z and y. We note that z # 3y and 2’ # 2’/. Since any
component of G is 2-connected, z and 2’ are distinct vertices. The subgraph
D induced on {x,2’,y,y'} is usually called a diamond. The edge xy is called
the central edge of D. Clearly, the central edge of D and the two edges of
the 2-cut connecting D to the rest of G have the same colour. A diamond
whose central edge have colour « is said to be an a-diamond. There are two
cases according to zz' ¢ E(G) (Case 1) or zz' € E(G) (Case 2). In Case 1,
an a-diamond is said to be an a-free diamond. The 3-edge coloured cubic
graph G’ on (n — 4) vertices obtained from G by deleting D and its incident
edges and adding the edge 22’ coloured with « is said to be obtained from
G by reduction of an a-free diamond. See Figure 4.
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Figure 4. a-free diamond and reduction  Case 1.

In Case 2 we denote by u (respectively ') the neighbour of z (respectively
2') distinct from 2/ and 2’ (respectively ¢’ and z). We note that u and
u’ are distinct vertices (recall that every component of G is 2-connected).
According to the colour 8 or v of the edge 22/, there are two sub-cases,
Case 2.1 and Case 2.2. We consider the cubic graph G’ on (n — 2) vertices
obtained from G by deleting the edge zz’ and replacing the paths uzz’ and
u'2'y’ by uz’ and v’y respectively (we shall say that G’ is obtained from G
by edge suppression of 22’'). In Case 2.1 we consider the 3-edge colouring ®;
of G’ such that ®1(zy) = ®1(2'u) = ®1(y'u') = v, P1(z2’) = P1(yy') = «a,
Oy (2'y) = ®1(zy’) = B and ®1(e) = P(e) for any other edge. See Figure 5.

Figure 5. a-diamond and edge suppression — Case 2.1.

In Case 2.2, we have the 3-edge colouring ®5 of G’ such that ®,(x
Do (z'u) = Po(y'u’) = B, La(22’) = Ca(yy) = a, Pa(2’y) = Pa(zy)
and ®o(e) = ®(e) for any other edge. See Figure 6.

y) =
-

Remark 4.6. Following notations of Definition 4.5, if xy is the central edge
of an a-free diamond D (Case 1) then an af-cycle containing zy gives an
af3-cycle of G’ containing the a-coloured edge 2z’ of the graph G’ obtained
from G by reduction of the a-free diamond D. If D is an a-diamond that is
not a-free (Case 2), then in Case 2.1 the af-cycle of G containing xy gives
the af-cycle {z,2’,y,y'} of G’ and in Case 2.2 an af-cycle containing zy
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(a-coloured in G) gives an af-cycle of G’ containing xy (3-coloured in G7).
The others a3-cycles, if there exist, are identical in G and in G.

Figure 6. a-diamond and edge suppression — Case 2.2.

4.2. Choosing a strong matching as a transversal

As pointed out before, we are interested in finding a particular transversal
of ®(a, B) when « and [ are any two distinct colours of a 3-edge colouring.

Theorem 4.7. Let G be a 3-edge coloured cubic graph and let @ be a 3-edge
colouring of G. Let o and B be any two distinct colours of ®. Then there

exists a strong matching SMca (o, ) intersecting every cycle belonging to the
2-factor ®(a, 3).

Proof. 1t is easily seen that the theorem is true for graphs with at most 8
vertices. Let us suppose that Theorem 4.7 is false and let G be a counterex-
ample having the smallest number of vertices. Without loss of generality we
can suppose that G is connected. Let a and § be two colours such that there
is no strong matching of G intersecting every afg-cycle of G.

Claim 1. G has neither an a-free edge nor a [-free edge.

Proof. By symmetry between « and [ it suffices to prove that G has no
a-free edge. Suppose, for contradiction, that xy is an a-free edge of G. By
minimality of G, the graph G’ obtained from G by reduction of the a-free
edge zy has a strong matching SMg (o, 3) intersecting every af-cycle of
G’. By Remark 4.4, every af-cycle C of G’ is either an af-cycle of G or
is obtained by reduction from an af-cycle of G containing xy. In the last
case, let {e} = SMg(a, ) N E(C). If e # 'y then SMe («, 3) is a strong
matching SMg(«, 3) of G. If e = 2’y (coloured with 3) then either 2" and
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y” are not incident to SMg (v, 3), and we put
SMg(a, B) = SMgr (e, B) — 2"y’ + zy
or else

e in Case 1, according to z” or 3" is incident to SM¢(a, 3) we put
SMg(a, B) = SMar (e, B) — z'y +yy'

or we put
SMG(Q) ﬁ) = SMG'(Q) ﬁ) - wly/ + za

e in Case 2 we put SMg(«,3) = SMg (o, ) — 2y + yy/'.

In any case, it is a routine matter to check that SMg(«, 3) so obtained is a
strong matching intersecting every af-cycle of G, a contradiction. Thus, G
has no a-free edge. [ |

Claim 2. G has neither an a-diamond nor a (-diamond.

Proof. By symmetry between « and [ it suffices to prove that G has no
a-diamond. By minimality of G, the graph G’ obtained from G by reduction
of an a-free diamond D (Case 1, see Figure 4) or by reduction of the edge 22’
(Cases 2.1 and 2.2, see Figures 5 and 6 has a strong matching SMg (o, 3)
intersecting every af-cycle C' of G’.

o In Case 1, if 22/ & SM¢i(a, 3) then set SMg(a,3) = SMg:(a, ) else
set SMq(a, B) = SMgi (v, B) — 22" + zy.

e In Cases 2.1 and 2.2, let uv be the edge of SM¢/(«, 3) contained in the
af-cycle of G' using {x,2',y,y'} set SMg(a, 8) = SMg (o, 3) —uv+zy.

By Remark 4.6 SM¢(«, ) is a strong matching of G intersecting every a/3-
cycle of G, a contradiction. Thus, G has no a-diamond. [ |

Claim 3. Every af-cycle C of G of length > 6 has no chord.

Proof. Suppose that zy is a chord of C. Let 2’ and z” be the neighbours
of x distinct from y, and let ¥’ and 3” be the neighbours of y distinct from
x. We suppose that the vertices 2/, z,2”,vy,y,y” appear in that order on C.
Let '~ and 2" T be respectively the neighbours of 2’ and z” on C distinct
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from x. We wish to prove that 2’z” and y'y” are not edges. Suppose, for
contradiction, that z/z” is an edge of G. By Claim 1 the vertices 2’ —, 2"+
and y are not three distinct vertices (otherwise 2’z and z”x will be a-free
or (-free edges). Since C has length at least 6, vertices #~ and 2t are
distinct. Without loss of generality we can suppose that '+ = y, that is
y = 2", and that ®(a'z) = 3. Since 2~ # y, the set {z'~, 2/, z, 2", y,y"}

induces an a-diamond, contrary to Claim 2. Thus, /2" is not an edge,

and, by symmetry, y'y” is not an edge. Let G’ be the cubic graph obtained
from G by deleting x and y and their incident edges and by adding the
edges 2’2" and y'y”. The cycle C gives a cycle C' in G’ of length |C| — 2.
By colouring the edges of C’ by the colours o and (3, and no change for
the other edges (which are edges of GG), we obtain a 3-edge colouring of
G'. Let SM¢i(a, ) be a strong matching intersecting every afS-cycle of G'.
Let us assume that SMg (o, 8) intersects each af-cycle of G’ exactly once.
Whenever neither ’x” nor y'y” are contained in SMg (o, 3)NC then we set
SMa(a, B) = SMg (o, 3). Otherwise, let uv be the edge of SMg (o, B)NC,
then we set SMg(a,3) = SMgi(a, ) — 2’2" + 2’z when wv = 2’2" or we
set SMg(a,3) = SMg (o, B) —y'y" + 4y when uv = y'y”. Then SMg (o, 3)
intersects every af-cycle of G, a contradiction. Hence, xy is not a chord

of C. [ ]

Claim 4. Every af-cycle C of G is a cycle of length 4.

Proof. Let C = (ag,a1,as,...,as,_1) be an af-cycle of length 2k > 6. Let
us consider respectively ag, al, aj, ..., a), | the neighbours of ag, a1, as,.. .,
asi—1 not belonging to C. For every i € {0,...,2k — 1} the edge a;a]
is coloured with the third colour 7 and hence af,a},db, ..., a5, | are dis-
tinct vertices. By Claim 3, a;_1a;12 is not an edge. Since a;a;4+1 is neither
an a-free nor a (-free edge, aja;,, € E(G). Thus, {ag,a}, a5, ... ah_;}
induces an af-cycle. Hence, G is the union of two chordless af-cycles
C = (ag,a1,a2,...,a2t-1) and C" = (ag,a}, d), ..., ab, ;) connected by the
matching {apa(, a1a}, azas, . .., agk_1ay, _,}. Since k > 3, it is clear that we
can choose an edge e on C' and an edge ¢’ on C’ such that {e, e’} is a strong
matching, a contradiction. Thus, & = 2 and C is a cycle of length 4. [ |

Hence the 2-factor ®(«, 3) is reduced to a set of squares. By Theorem 2.2
G would have a Jaeger’s matching M = Mp + Mpg such that the strong
matching Mp (or indifferently Mp) intersects every square, a contradiction.
Thus, G does not exist and Theorem 4.7 is proved. [ |
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Corollary 4.8. Let G be a cubic graph. Then G can be factored into two
odd linear forests L = (Lp, Lg) such that

(i) Each path in Lp has odd length at most 3,
(ii) Fach path in Lr has odd length at least 3

if and only if X'(G) = 3.

Proof. Assume that G has an odd linear partition L = (Lp, Lg) with
these properties. As in Theorem 4.1 we get immediately a 3-edge colouring.

Conversely, let a and 8 be two colours of a 3-edge colouring ® of G
and let SM¢(a, 3) be a minimal strong matching intersecting each cycle of
®(a, B). If T denotes the set of edges coloured by ~ then Lg = T'+SM¢g(«, 5)
is a set of odd paths of length at most 3. While Lr = ®(a, 3) \ SM¢g(a, )
is a set of odd paths of length at least 3 (recall that, G being simple, every
bicoloured cycle has length at least 4). Hence, (Lp, Lg) is an odd linear
partition satisfying conditions (i) and (ii). ]

4.3. TUnicoloured transversal

In this section we derive from Theorem 4.7 a result on unicoloured transver-
sals of the 2-factors induced by any 3 edge-colouring of a cubic graph with
chromatic index 3. Let us first state a useful Lemma (folklore).

Lemma 4.9. Let G = (V,E) be a multi-graph then it is always possible
to give an orientation to its edge set in such a way that for any verter v
|[dT (v) —d~(v)] < 1 (where d*(v) denotes as usual the outdegree of v and
d~ (v) its indegree).

Proof. Without loss of generality we consider that G is connected. Add
a matching of extra edges between vertices of odd degrees in G (since there
is an even number of vertices with odd degree) in order to get an eule-
rian graph G’. We orient the edges of G’ following an eulerian tour. It is
a routine matter to check that the orientation induced in G satisfies our
requirement. ]

Theorem 4.10. Let G be a cubic 3-edge colourable graph and let ® be a
3-edge colouring of G. Let o and 3 be any two distinct colours of ® and let
be the third colour. Then there exists a set F,, of a-edges intersecting every
cycle belonging to the 2-factor ®(a, ) such that the set Fy, together with the
v-edges has no cycle.
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Proof. We know by Theorem 4.7 that there exists a strong matching
SMa(a, B) intersecting every cycle of the 2-factor ®(«, ().

Let A be the set of a-edges of SM¢(«, 3) while B is the set of remaining
(B-edges of SMg(a, 3). We may assume that B is not empty, for otherwise
we set I, = A and we are done.

Let A’ be the set of a-edges of G which are incident to an edge of B.
For each edge e € A’, the attachment vertex of e will be the vertex incident
to the edge of B. B being a strong matching this attachment vertex is well
defined. We intend to define F,, as a subset of AU A’ which contains A and
thus we focus on the ay-cycles of G whose a-edges belong to AU A’

Claim. An av-cycle of G whose all a-edges belong to AU A’ cannot contain
any edge of A.

Proof. Let C = zoyor1y1 - .. Tpyr be an ay-cycle of G whose all a-edges
belong to AU A’. Assume that x;y; are a-edges while y;x;11 are y-edges
(¢ being taken modulo k + 1). Let us suppose that zgyg € A. The edge
x1y1 is certainly in A’, otherwise A should not be a strong matching. The
attachement vertex of x1y; cannot be x; otherwise A U B is not a strong
matching. Considering now zay2, we can say that this edge is not in A
(otherwise AU B is not a strong matching) and its attachment vertex cannot
be z9 (otherwise B is not a strong matching). Running through the set of a-
edges x;1; we can show in the same way that these edges are in A’ and their
attachment vertices are certainly the y;’'s. We obtain thus a contradiction
with xpyy since this edge is in A’ and its attachment vertex is y; which is
impossible since y;, is adjacent to xg. [ |

Let C be the set of y-edges which are incident to an edge of A" and H be the
subgraph of G whose edge-set is A’UC, obviously the connected components
of H are paths or cycles. By Claim every a~y-cycle of G whose all a-edges
belong to AU A’ is also a cycle of H.

Every edge of B is incident in G to a connected component of H, thus
we define an auxiliary graph, namely H’, in the following way: the vertices
of H' are the connected components of H while it’s edge-set is B. Since
every connected component of H contains at least one edge of A’ there is no
isolated vertex in H'.

Using Lemma 4.9, we can find an orientation of the edges of H' such
that every vertex of H' of degree at least 2 has an in-going edge and an
out-going edge.
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For any edge e of B we denote o(e) the endpoint of e with respect of the
previous orientation of H' and we define an injective mapping f : B — A’:
given an edge e of B, f(e) is the a-edge of A’ whose attachment vertex is
o(e).

We set F,, = AU{f(e)|le € B}. Observe that F, is a set of a-edges.
Since A U B covers all af-cycles of G and since e and f(e) belong to the
same af-cycle of G, Fy, covers all af-cycles of G. Moreover, suppose that
C is an ay-cycle of G whose a-edges are members of F,. Then C is an ay-
cycle of H and has a vertex of degree at least 2 in H’. But now, the a-edge
of C which is incident to an out-going edge of C does not belong to Fy,
a contradiction. [

Remark 4.11. It is possible to derive a linear time algorithm for the con-
struction of the unicoloured transversal Fy, of Theorem 4.10 once the 3-edge
colouring ® and the strong matching described in Theorem 4.7 are given.
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