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tA linear forest is a graph whose 
onne
ted 
omponents are 
hordlesspaths. A linear partition of a graph G is a partition of its edge set intolinear forests and la(G) is the minimum number of linear forests in alinear partition.In this paper we 
onsider linear partitions of 
ubi
 simple graphsfor whi
h it is well known that la(G) = 2. A linear partition L =
(LB, LR) is said to be odd whenever ea
h path of LB ∪ LR has oddlength and semi-odd whenever ea
h path of LB (or ea
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ubi
 graph G is 3-edge 
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tionAs usually, for any undire
ted graph G, we denote by V (G) the set of itsverti
es and by E(G) the set of its edges and we 
onsider, as usual, that
|V (G)| = n and |E(G)| = m. If F ⊆ E(G) then V (F ) is the set of verti
eswhi
h are in
ident with some edges of F . For any path P we shall denoteby l(P ) the length of P , that is to say the number of its edges. A vertex ofa path P distin
t from an end-vertex is said to be an internal vertex. If uand v are verti
es of a path P then P [u, v] denotes the subpath of P whoseend-verti
es are u and v. A strong mat
hing C in a graph G is a mat
hing
C su
h that there is no edge of E(G) 
onne
ting any two edges of C, or,equivalently, su
h that C is the edge-set of the subgraph of G indu
ed by thevertex-set V (C). A 2-fa
tor of G is a spanning subgraph whose 
omponentsare 
y
les. If every 
y
le of a 2-fa
tor has an even length then we say thatthis 2-fa
tor is an even 2-fa
tor.A linear-k-forest is a forest whose 
omponents are paths of length atmost k. The linear-k-arbori
ity of an undire
ted graph G is de�ned in [5℄ asthe minimum number of linear-k-forests needed to partition the set E(G).The linear-k-arbori
ity is a natural re�nement of the linear-arbori
ity in-trodu
ed by Harary [6℄ (
orresponding to linear-(n − 1)-arbori
ity). Thelinear-k-arbori
ity will be denoted by lak(G).Let χ

′

(G) be the 
lassi
al 
hromati
 index (minimum edge 
olouring)and let la(G) be the linear arbori
ity of G. We 
learly have:
la(G) = lan−1(G) ≤ lan−2(G) ≤ · · · ≤ la2(G) ≤ la1(G) = χ

′

(G).We know by Vizing's Theorem [10℄ that la1(G) ≤ ∆(G) + 1 (where ∆(G)is the maximum degree of G). For any k ≥ 2, we have (lower bound 
omesfrom [5℄ and upper bound from [3℄):
max

(⌈

∆(G)

2

⌉

,

⌈

m(k + 1)

kn

⌉)

≤ lak(G) ≤ ∆(G).In this paper we 
onsider 
ubi
 graphs, that is to say �nite simple 3-regulargraphs. Sin
e in a 
ubi
 graph G we have 3n = 2m, by the previous formulawe obtain:
la2(G) = 3 and for any k ≥ 3, 2 ≤ lak(G) ≤ 3.
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ubi
 graph obtained from two disjoint 
y
les of length 3 
onne
ted bya perfe
t mat
hing is denoted by PR3. It was shown by Akiyama, Exoo andHarary [1℄ that la(G) = 2 when G is 
ubi
. In [3℄ Bermond et al. 
onje
turedthat la5(G) = 2. Thomassen [9℄ proved the 
onje
ture, whi
h is best possiblesin
e, in view of la4(K3,3) = 3 and la4(PR3) = 3, 5 
annot be repla
ed by 4.A partition of E(G) into two linear forests LB and LR will be 
alleda linear partition and we shall denote this linear partition L = (LB , LR) .An odd linear forest is a linear forest in whi
h ea
h path is a path of oddlength. A semi-odd linear partition is a linear partition L = LB ∪ LR su
hthat LB or LR is an odd linear forest. An odd linear partition is a partitionof E(G) into two odd linear forests. For i ∈ {B,R} let ω(Li) be the numberof 
omponents (or maximal paths) of Li. Sin
e every vertex of G is eitherend-vertex of a maximal path of LB or end-vertex of a maximal path of LR,we have
ω(LB) + ω(LR) =

|V (G)|

2
.2. Jaeger's GraphsA spe
ial 
lass of 
ubi
 graphs introdu
ed by F. Jaeger will be 
onsidered.De�nition 2.1. Let us 
all a Jaeger's mat
hing a perfe
t mat
hing whi
his the union of two strong mat
hings. A 
ubi
 graph G is a Jaeger's graphwhenever G 
ontains a Jaeger's mat
hing.In his thesis [8℄ Jaeger 
alled these 
ubi
 graphs equitable and pointed outthat the improper 2-
olouring {B,R} of their verti
es indu
ed by a perfe
tmat
hing M union of two disjoint strong mat
hings MB and MR leads to abalan
ed 
olouring as de�ned by Bondy [4℄.When G is a 
ubi
 graph having a 2-fa
tor of C4's, say F , we 
onsiderthe auxiliary 2-regular graph G′ de�ned as follows: every C4 of F is repla
edwith its 
omplementary graph (whi
h is a 2K2).Theorem 2.2. Let G be a 
onne
ted 
ubi
 graph having a 2-fa
tor of squares,say F and let p be the number of 
y
les of G′. Then there are 2p−1 Jaeger'smat
hings in G whi
h interse
t F .

P roof. We �rst prove that there are at most two types of Jaeger's mat
h-ings in G.
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hing of G. If M interse
ts Fthen every C4 of F 
ontains an edge of MB and an edge of MR.
P roof of Claim. Re
all that MB and MR are strong mat
hings. With-out loss of generality we may assume that there is some edge say ab of some
C4 in F , say abcd whi
h belongs to MB . Sin
e M is a perfe
t mat
hing and
MB is a strong mat
hing the verti
es c and d must be the endpoint of someedge(s) of MR. Sin
e MR is a strong mat
hing we have cd ∈ MR. Let a′b′c′d′be another C4 of F whi
h is 
onne
ted to abcd by some edge say aa′. Theedge aa′ is not an edge of M (M is a mat
hing) and sin
e a′ must be anendpoint of an edge of MR, MR interse
ts a′b′c′d′. Consequently, G being
onne
ted we have that MB and MR interse
t all 
y
les of F .It follows that a Jaeger's mat
hing of G is either 
ontained into F or disjointfrom F .We now establish a 
orresponden
e between the orientations of the 
y
lesof G′ and the Jaeger's mat
hings of G whi
h interse
t F .Let us give an orientation of the 
y
les of G′. Going ba
k now to G,ea
h C4 of F has an edge 
onne
ted to two out-going edges and an edge
onne
ted to two in-going edges. Let MB be the set of edges 
onne
tedto two out-going edges over all the C4's of F while MR 
ontains the edges
onne
ted to two in-going edges. It's an easy task to 
he
k that MB ∪ MRis a Jaeger's mat
hing of G.Conversely let us 
onsider a Jaeger's mat
hing M = MB ∪ MR of Gwhi
h interse
ts F . By the above Claim, ea
h C4 of F 
ontains an edge of
MB and an edge of MR. For any C4 of F and for any vertex v of this C4 wedenote ev the edge of E(G)\E(F) that is adja
ent to v. We know that v isan endpoint of an edge in MB or in MR. We give an orientation to the edge
ev in su
h a way that ev is an out-going edge (that is v is the origin) if andonly if v is endpoint of an edge of MB . Sin
e every edge of E(G)\E(F) is
onne
ted to two C4's of F those edges are oriented twi
e; more pre
isely:when aa′ is an edge 
onne
ting two 
y
les of F , say abcd and a′b′c′d′, if
aa′ = ea is an out-going edge for the 
y
le abcd then aa′ = ea′ must be anin-going edge for a′b′c′d′ for otherwise MB would not be a strong mat
hing.Consequently the given orientation of all edges ev (v ∈ V (G)) extends to anorientation of the 
y
les of G′.We have 2p possible orientations of the 
y
les of G′. A given orienta-tion of ea
h 
y
le of G′ and the opposite orientations of these 
y
les yield to
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onsequently, there are 2p−1 Jaeger's mat
hingsinterse
ting the 2-fa
tor F of G. This �nishes the proof.By Theorem 2.2 every 
ubi
 graph having a 2-fa
tor of squares has at leastone Jaeger's mat
hing. Hen
e we 
on
lude this subse
tion with the following
orollaries.Corollary 2.3. A 
ubi
 graph having a 2-fa
tor of squares is a Jaeger'sgraph.Furthermore, we 
an derive from Theorem 2.2 a simple linear time algorithmfor �nding a Jaeger's mat
hing in a 
onne
ted 
ubi
 graph whi
h have a 2-fa
tor of squares.It 
an be noti
ed that every 
ubi
 graph with a perfe
t mat
hing M 
anbe transformed into a Jaeger's graph by using the transformation (squareextension) depi
ted in Figure 1 on ea
h edge of M . Indeed, the resultinggraph has a 2-fa
tor of squares and we 
an apply Theorem 2.2.
Figure 1. Square extensionCorollary 2.4. A 
onne
ted 
ubi
 graph is 3-edge 
olourable if and only ifthere is a perfe
t mat
hing N su
h that the 
ubi
 graph obtained in using asquare extension on ea
h edge of N leads to a Jaeger's graph having an oddnumber (at least 3) of Jaeger's mat
hings.

P roof. Let G be a 
ubi
 graph su
h that G′, obtained from G by squareextensions on ea
h edge of N , has an odd number of Jaeger's mat
hings. Let
F be the 2-fa
tor of C4's of G′ obtained by these square extensions. Sin
e
G′ has an odd number of Jaeger's mat
hings, Theorem 2.2 says that there isa Jaeger's mat
hing M of G′ whi
h avoids all the edges of F . Clearly, thereis a bije
tion between M and the 2-fa
tor E(G)\N . Sin
e M is the union ofthe strong mat
hings MB and MR, going ba
k to G the edges of MB ∪ MRgive rise to an even 2-fa
tor E(G) \N of G whi
h, together with N , leads toa 3-edge 
olouring of G.
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olourable. Then extending ea
h edgeof a given 
olour in a 3-edge 
olouring of G leads to a graph G′ whi
h has a
2-fa
tor of squares. We 
an 
hoose the square of G′ extending an edge of Gof the given 
olour in su
h a way that any of the two other 
olours indu
esa strong mat
hing. Indeed, the edges of the two other 
olours give rise to aJaeger's mat
hing in G′ avoiding every square so 
onstru
ted and Theorem2.2 applies. 3. Semi-Odd Linear PartitionsWe are interested by relationships between perfe
t mat
hings and semi-oddlinear partitions and we generalize a theorem of Aldred and Wormald [2℄.We will 
ome again on their result in the next se
tion.Theorem 3.1. Let G be a 
ubi
 graph having a perfe
t mat
hing M . Thenthere exists a set F ⊆ E(G) − M interse
ting ea
h 
y
le of the 2-fa
tor
G − M su
h that F + M is an odd linear forest.
P roof. Let {C1, C2, . . . , Ck} be the 
y
les of G−M (with k ≥ 1). Clearlyif e is an edge of C1 then the set M ∪ {e} indu
es an odd linear forest of G(made of a path of length 3 and a mat
hing). Let us suppose that k ≥ 2 andlet i su
h that 1 ≤ i < k. We suppose that for every j with 1 ≤ j ≤ i wehave 
hosen an edge ej of Cj su
h that Fi + M is an odd linear forest (with
Fi = {e1, e2, . . . , ei}). Let xy be an edge of Ci+1. If Fi + M + xy 
ontains a
y
le then xy belongs to this 
y
le. Thus, Fi + M 
ontains a path P having
x and y as end verti
es. Let z be the neighbour of y on Ci+1 distin
t from
x. Then, Fi + M + yz 
ontains no 
y
le (if it 
ontains a 
y
le, then Fi + M
ontains a path P ′ having y and z as end verti
es, 
ontradi
ting the existen
eof P ). So, Ci+1 
ontains an edge, say ei+1, su
h that Fi + ei+1 + M is anodd linear forest. Let us denote Fi + ei+1 by Fi+1. The results follows byindu
tion.De�nition 3.2. For every odd path P = [a0, a1, . . . , a2l+1], with l ≥ 0, wesay that the edges {a0a1, a2a3, . . . , a2la2l+1} are at even distan
e from theend verti
es of P .Theorem 3.3. A 
ubi
 graph has a perfe
t mat
hing if and only if it has asemi-odd linear partition.
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P roof. If M is a perfe
t mat
hing of a 
ubi
 graph G then by Theorem3.1 the graph G has a set of edges F interse
ting every 
y
le of the 2-fa
tor
G \ M su
h that F + M is an odd linear forest. Set LB = F + M and
LR = G − F − M Then, L = (LB , LR) is a semi-odd linear partition.Conversely, if the graph has a semi-odd linear partition L = (LB , LR) ,we suppose without loss of generality that LB is an odd linear forest. Let
M be the set of edges of LB at even distan
e from the end verti
es of themaximal paths of LB . It is a routine matter to 
he
k that M is a mat
hing.Sin
e LB is a spanning forest, M is a perfe
t mat
hing.For any 
ubi
 graph G having a perfe
t mat
hing (or, equivalently, a 2-fa
tor)we denote by ρ(G) the minimum number of even maximal paths appearingin a semi-odd linear partition, and we denote by o(G) the minimum numberof odd 
y
les appearing in a 2-fa
tor of G (we note that o(G) is an evennumber). If ρ(L) denotes the number of even maximal paths of a semi-oddlinear partition L = (LB , LR) , then ρ(G) = Min{ρ(L)| L is a semi-oddlinear partition of G}.Theorem 3.4. Let G be a 
ubi
 graph having a 2-fa
tor (or, equivalently, aperfe
t mat
hing). Then ρ(G) = o(G).
P roof. Let us suppose that G has a 2-fa
tor. Let {C1, C2, . . . , Ck} be a
2-fa
tor of G having o(G) odd 
y
les, and let M be the perfe
t mat
hingasso
iated with this 2-fa
tor. By Theorem 3.1 we 
an 
hoose a set of edges
F (one by 
y
le) su
h that F + M is an odd linear forest LB. The set
E(G) − E(LB) indu
es a linear forest LR and we 
onsider the semi-oddlinear partition L = (LB , LR) . The number ρ(L) of even maximal pathsof LR is equal to the number o(G) of odd 
y
les in {C1, C2, . . . , Ck}. Thus,
ρ(G) ≤ o(G).Now let L = (LB , LR) be a semi-odd linear partition su
h that LB isan odd linear forest. As in Proof of Theorem 3.3, let M be the perfe
tmat
hing made of the edges of LB at even distan
e from the end verti
es ofthe maximal paths of LB, and let {C1, C2, . . . , Ck} be the 2-fa
tor G − M .Every path of LB of length ≥ 3 interse
ts this 2-fa
tor and we see that
E(LB)∩ (E(C1)∪E(C2) · · · ∪E(Ck)) is a mat
hing. Now 
onsider any 
y
le
Ci of this 2-fa
tor. Clearly, E(LB) interse
ts E(Ci). Let {e1, e2, . . . , er} =
E(LB)∩E(Ci). We see that E(Ci)−E(LB) indu
es a set of elementary paths
{P1, P2, . . . , Pr} whi
h are pre
isely maximal paths of LR. If P1, P2, . . . , Prhave odd lengths then |E(Ci)| = r +

∑j=r
j=1

l(Pj) is even. Thus, if Ci is an
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y
le then at least one of these paths has an even length. Then, ρ(L)is greater or equal to the number of odd 
y
le in {C1, C2, . . . , Ck}. Hen
e,
ρ(L) ≥ o(G). By 
hoosing L su
h that ρ(L) = ρ(G), we obtain ρ(G) ≥ o(G).4. Odd Linear PartitionsLet G be a 
ubi
 graph. Assume that L = (LB , LR) is a linear partition ofits edge set. By 
olouring alternately the edges of the maximal paths in LBwith α and γ and those of LR with β and δ, we get a 4-edge 
olouring.We note that a 
ubi
 graph G 
an be fa
tored into two odd linear forestsif and only if ρ(G) = 0 and that G has an even 2-fa
tor (or, equivalently, is
3-edge 
olourable) if and only if o(G) = 0. So, the following result of Aldredand Wormald 
an be obtained as a 
orollary of Theorem 3.4.Theorem 4.1 [2℄. Let G be a 
ubi
 graph. Then the following propertiesare equivalent:

1. G is 3-edge 
olourable (that is χ′(G) = 3).

2. G 
an be fa
tored into two odd linear forests.Re
all here a sket
h of their proof. Suppose that L = (LB , LR) is an oddlinear partition of G. A proper 3-edge 
olouring of G is obtained by 
olouringthe edges of the paths in LB alternately with α and γ so that ea
h path in
LB has its �rst and last edges 
oloured with α, and by 
olouring the edges ofthe paths in LR alternately with β and γ so that ea
h path in LR has its �rstand last edges 
oloured with β. Conversely, if G is 3-edge 
olourable, let us
onsider a proper 3-edge 
olouring using α, β and γ as 
olours. Pi
k an edgefrom ea
h 
y
le of the even 2-fa
tor Φ(α, β) indu
ed by the 
olours α and β,and let F be the set of these pi
ked edges. The subgraph of G formed by Fand the perfe
t mat
hing R indu
ed by 
olour γ has 
onne
ted 
omponentswhi
h are odd paths or even 
y
les. Ea
h even 
y
le is broken by 
hoosingan edge 
oloured with γ (let F ′ be this set of edges). Then LR = R+F −F ′is a set of odd paths as well as LB = Φ(α, β) − F + F ′, leading to an oddlinear partition L = (LB , LR) of G.The remarkable point here is that F is a minimal transversal of the
y
les of Φ(α, β) where ea
h edge of F has been 
hosen at random. Theirstrategy is a greedy strategy with simple a

ommodations in order to brokesome even 
y
les. In our proof of Theorem 3.4 we 
hoose randomly an edge
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y
le, and if this edge is not a

eptable we 
hoose an in
ident edge. Thisstrategy is intermediate between the greedy strategy of Aldred and Wormaldand the strategy that we will develop in the next subse
tions. We shall seethat when suitably 
hoosing edges in F we extend their result.4.1. Redu
tionsAssume that G is a 
ubi
 3-edge 
olourable graph and let Φ be a 3-edge
olouring of G. For any edge e, let us denote the 
olour of e by Φ(e). Let αand β be any two distin
t 
olours of Φ and let γ be the third 
olour. Thesubset of the edges of G 
oloured with α or with β indu
es an even 2-fa
tor.In the following the 2-fa
tor indu
ed by any two distin
t 
olours α and β willbe denoted by Φ(α, β). Any 
y
le of Φ(α, β) is said to be an αβ-
y
le. Sin
e
α and β are arbitrary 
olours it is 
lear that the 
onne
ted 
omponents ofa 3-edge 
olourable 
ubi
 graph are 2-
onne
ted subgraphs. We need somespe
i�
 de�nitions for this se
tion.De�nition 4.2. Let α and β be any two distin
t 
olours of Φ. In thefollowing SMG(α, β) will denote a strong mat
hing of G interse
ting every
αβ-
y
le (when su
h a strong mat
hing exists).De�nition 4.3. Let α and β be any two distin
t 
olours of Φ. Let xy bean edge of G and let x′ and x′′ (respe
tively y′ and y′′) be the (distin
t)neighbours of x (of y, respe
tively) distin
t from y (respe
tively x) su
h that
x′ 6= y′′ or x′′ 6= y′ and suppose that x′y′ and x′′y′′ are not edges of G. Let ussuppose that Φ(xy) = α, Φ(xx′) = Φ(yy′) = β and Φ(xx′′) = Φ(yy′′) = γ.If x′ 6= y′′ or x′′ 6= y′ then the edge xy is said to be an α-free edge. Notethat edge x′y′′ (respe
tively x′′y′) may exist, and in this 
ase Φ(x′y′′) = α(respe
tively Φ(x′′y′) = α). We noti
e that, without loss of generality, thereare two 
ases:

• Case 1. x′ 6= y′′ and x′′ 6= y′.
• Case 2. x′ = y′′ and x′′ 6= y′.The 3-edge 
oloured 
ubi
 graph G′ on (n − 2) verti
es obtained from G bydeleting verti
es x and y and their in
ident edges and adding the edges x′y′and x′′y′′, 
oloured respe
tively by β and γ, is said to be obtained from Gby redu
tion of an α-free edge. Situations are depi
ted on Figures 2 and 3.Clearly, if G 
ontains a triangle (a 
y
le of length 3) T su
h that the threeedges 
onne
ting T to G− T are independent then every edge of T is a freeedge (i.e., α-free edge if its 
olour is α).



284 J.L. Fouquet, H. Thuillier, J.M. Vanherpe and A.P. WojdaRemark 4.4. Following the notations of De�nition 4.3, if xy is an α-freeedge of G, the αβ-
y
le of G 
ontaining xy gives the αβ-
y
le of G′ 
ontainingthe β-
oloured edge x′y′ of the graph G′ obtained from G by redu
tion ofthe α-free edge xy. The others αβ-
y
les, if they exist, are identi
al in Gand in G′.
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Figure 2. α-free edge and redu
tion � Case 1.
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z x’ = y"

x"

y’

α

γ

β
x’ = y"Figure 3. α-free edge and redu
tion � Case 2.De�nition 4.5. Following the notations of De�nition 4.3, let us supposethat x′ = y′′ and x′′ = y′ (that is xy is a 
hord of the subgraph indu
ed on

{x, x′, y, y′}) and suppose that the 
omponent of G 
ontaining {x, x′, y, y′} isdistin
t from K4. Let z (respe
tively z′) be the neighbour of x′ (respe
tively
y′) distin
t from x and y. We note that z 6= y′ and z′ 6= x′. Sin
e any
omponent of G is 2-
onne
ted, z and z′ are distin
t verti
es. The subgraph
D indu
ed on {x, x′, y, y′} is usually 
alled a diamond. The edge xy is 
alledthe 
entral edge of D. Clearly, the 
entral edge of D and the two edges ofthe 2-
ut 
onne
ting D to the rest of G have the same 
olour. A diamondwhose 
entral edge have 
olour α is said to be an α-diamond. There are two
ases a

ording to zz′ /∈ E(G) (Case 1) or zz′ ∈ E(G) (Case 2). In Case 1,an α-diamond is said to be an α-free diamond. The 3-edge 
oloured 
ubi
graph G′ on (n− 4) verti
es obtained from G by deleting D and its in
identedges and adding the edge zz′ 
oloured with α is said to be obtained from
G by redu
tion of an α-free diamond. See Figure 4.
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z
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α
α

α

γ β

β γ

z’z

αFigure 4. α-free diamond and redu
tion � Case 1.In Case 2 we denote by u (respe
tively u′) the neighbour of z (respe
tively
z′) distin
t from x′ and z′ (respe
tively y′ and z). We note that u and
u′ are distin
t verti
es (re
all that every 
omponent of G is 2-
onne
ted).A

ording to the 
olour β or γ of the edge zz′, there are two sub-
ases,Case 2.1 and Case 2.2. We 
onsider the 
ubi
 graph G′ on (n − 2) verti
esobtained from G by deleting the edge zz′ and repla
ing the paths uzx′ and
u′z′y′ by ux′ and u′y′ respe
tively (we shall say that G′ is obtained from Gby edge suppression of zz′). In Case 2.1 we 
onsider the 3-edge 
olouring Φ1of G′ su
h that Φ1(xy) = Φ1(x

′u) = Φ1(y
′u′) = γ, Φ1(xx′) = Φ1(yy′) = α,

Φ1(x
′y) = Φ1(xy′) = β and Φ1(e) = Φ(e) for any other edge. See Figure 5.
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Figure 5. α-diamond and edge suppression � Case 2.1.In Case 2.2, we have the 3-edge 
olouring Φ2 of G′ su
h that Φ2(xy) =
Φ2(x

′u) = Φ2(y
′u′) = β, Φ2(xx′) = Φ2(yy′) = α, Φ2(x

′y) = Φ2(xy′) = Φand Φ2(e) = Φ(e) for any other edge. See Figure 6.Remark 4.6. Following notations of De�nition 4.5, if xy is the 
entral edgeof an α-free diamond D (Case 1) then an αβ-
y
le 
ontaining xy gives an
αβ-
y
le of G′ 
ontaining the α-
oloured edge zz′ of the graph G′ obtainedfrom G by redu
tion of the α-free diamond D. If D is an α-diamond that isnot α-free (Case 2), then in Case 2.1 the αβ-
y
le of G 
ontaining xy givesthe αβ-
y
le {x, x′, y, y′} of G′ and in Case 2.2 an αβ-
y
le 
ontaining xy
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oloured in G) gives an αβ-
y
le of G′ 
ontaining xy (β-
oloured in G′).The others αβ-
y
les, if there exist, are identi
al in G and in G′.
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β γ βFigure 6. α-diamond and edge suppression � Case 2.2.4.2. Choosing a strong mat
hing as a transversalAs pointed out before, we are interested in �nding a parti
ular transversalof Φ(α, β) when α and β are any two distin
t 
olours of a 3-edge 
olouring.Theorem 4.7. Let G be a 3-edge 
oloured 
ubi
 graph and let Φ be a 3-edge
olouring of G. Let α and β be any two distin
t 
olours of Φ. Then thereexists a strong mat
hing SMG(α, β) interse
ting every 
y
le belonging to the
2-fa
tor Φ(α, β).
P roof. It is easily seen that the theorem is true for graphs with at most 8verti
es. Let us suppose that Theorem 4.7 is false and let G be a 
ounterex-ample having the smallest number of verti
es. Without loss of generality we
an suppose that G is 
onne
ted. Let α and β be two 
olours su
h that thereis no strong mat
hing of G interse
ting every αβ-
y
le of G.Claim 1. G has neither an α-free edge nor a β-free edge.
P roof. By symmetry between α and β it su�
es to prove that G has no
α-free edge. Suppose, for 
ontradi
tion, that xy is an α-free edge of G. Byminimality of G, the graph G′ obtained from G by redu
tion of the α-freeedge xy has a strong mat
hing SMG′(α, β) interse
ting every αβ-
y
le of
G′. By Remark 4.4, every αβ-
y
le C of G′ is either an αβ-
y
le of G oris obtained by redu
tion from an αβ-
y
le of G 
ontaining xy. In the last
ase, let {e} = SMG′(α, β) ∩ E(C). If e 6= x′y′ then SMG′(α, β) is a strongmat
hing SMG(α, β) of G. If e = x′y′ (
oloured with β) then either x′′ and
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y′′ are not in
ident to SMG′(α, β), and we put

SMG(α, β) = SMG′(α, β) − x′y′ + xyor else
• in Case 1, a

ording to x′′ or y′′ is in
ident to SMG′(α, β) we put

SMG(α, β) = SMG′(α, β) − x′y′ + yy′or we put
SMG(α, β) = SMG′(α, β) − x′y′ + xx′

• in Case 2 we put SMG(α, β) = SMG′(α, β) − x′y′ + yy′.In any 
ase, it is a routine matter to 
he
k that SMG(α, β) so obtained is astrong mat
hing interse
ting every αβ-
y
le of G, a 
ontradi
tion. Thus, Ghas no α-free edge.Claim 2. G has neither an α-diamond nor a β-diamond.
P roof. By symmetry between α and β it su�
es to prove that G has no
α-diamond. By minimality of G, the graph G′ obtained from G by redu
tionof an α-free diamond D (Case 1, see Figure 4) or by redu
tion of the edge zz′(Cases 2.1 and 2.2, see Figures 5 and 6 has a strong mat
hing SMG′(α, β)interse
ting every αβ-
y
le C of G′.
• In Case 1, if zz′ 6∈ SMG′(α, β) then set SMG(α, β) = SMG′(α, β) elseset SMG(α, β) = SMG′(α, β) − zz′ + xy.
• In Cases 2.1 and 2.2, let uv be the edge of SMG′(α, β) 
ontained in the

αβ-
y
le of G′ using {x, x′, y, y′} set SMG(α, β) = SMG′(α, β)−uv+xy.By Remark 4.6 SMG(α, β) is a strong mat
hing of G interse
ting every αβ-
y
le of G, a 
ontradi
tion. Thus, G has no α-diamond.Claim 3. Every αβ-
y
le C of G of length ≥ 6 has no 
hord.
P roof. Suppose that xy is a 
hord of C. Let x′ and x′′ be the neighboursof x distin
t from y, and let y′ and y′′ be the neighbours of y distin
t from
x. We suppose that the verti
es x′, x, x′′, y′, y, y′′ appear in that order on C.Let x

′
− and x

′′+ be respe
tively the neighbours of x′ and x′′ on C distin
t
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ontradi
tion, that x′x′′ is an edge of G. By Claim 1 the verti
es x
′
−, x

′′+and y are not three distin
t verti
es (otherwise x′x and x′′x will be α-freeor β-free edges). Sin
e C has length at least 6, verti
es x
′
− and x

′′+ aredistin
t. Without loss of generality we 
an suppose that x
′′+ = y, that is

y′ = x′′, and that Φ(x′x) = β. Sin
e x
′
− 6= y, the set {x

′
−, x′, x, x′′, y, y′′}indu
es an α-diamond, 
ontrary to Claim 2. Thus, x′x′′ is not an edge,and, by symmetry, y′y′′ is not an edge. Let G′ be the 
ubi
 graph obtainedfrom G by deleting x and y and their in
ident edges and by adding theedges x′x′′ and y′y′′. The 
y
le C gives a 
y
le C ′ in G′ of length |C| − 2.By 
olouring the edges of C ′ by the 
olours α and β, and no 
hange forthe other edges (whi
h are edges of G), we obtain a 3-edge 
olouring of

G′. Let SMG′(α, β) be a strong mat
hing interse
ting every αβ-
y
le of G′.Let us assume that SMG′(α, β) interse
ts ea
h αβ-
y
le of G′ exa
tly on
e.Whenever neither x′x′′ nor y′y′′ are 
ontained in SMG′(α, β)∩C then we set
SMG(α, β) = SMG′(α, β). Otherwise, let uv be the edge of SMG′(α, β)∩C,then we set SMG(α, β) = SMG′(α, β) − x′x′′ + x′x when uv = x′x′′ or weset SMG(α, β) = SMG′(α, β)−y′y′′ +y′y when uv = y′y′′. Then SMG(α, β)interse
ts every αβ-
y
le of G, a 
ontradi
tion. Hen
e, xy is not a 
hordof C.Claim 4. Every αβ-
y
le C of G is a 
y
le of length 4.
P roof. Let C = (a0, a1, a2, . . . , a2k−1) be an αβ-
y
le of length 2k ≥ 6. Letus 
onsider respe
tively a′0, a

′

1, a
′

2, . . . , a
′

2k−1
the neighbours of a0, a1, a2, . . . ,

a2k−1 not belonging to C. For every i ∈ {0, . . . , 2k − 1} the edge aia
′

iis 
oloured with the third 
olour γ and hen
e a′0, a
′

1, a
′

2, . . . , a
′

2k−1
are dis-tin
t verti
es. By Claim 3, ai−1ai+2 is not an edge. Sin
e aiai+1 is neitheran α-free nor a β-free edge, a′ia

′

i+1 ∈ E(G). Thus, {a′0, a′1, a′2, . . . , a′2k−1
}indu
es an αβ-
y
le. Hen
e, G is the union of two 
hordless αβ-
y
les

C = (a0, a1, a2, . . . , a2k−1) and C ′ = (a′0, a
′

1, a
′

2, . . . , a
′

2k−1
) 
onne
ted by themat
hing {a0a

′

0, a1a
′

1, a2a
′

2, . . ., a2k−1a
′

2k−1
}. Sin
e k ≥ 3, it is 
lear that we
an 
hoose an edge e on C and an edge e′ on C ′ su
h that {e, e′} is a strongmat
hing, a 
ontradi
tion. Thus, k = 2 and C is a 
y
le of length 4.Hen
e the 2-fa
tor Φ(α, β) is redu
ed to a set of squares. By Theorem 2.2

G would have a Jaeger's mat
hing M = MB + MR su
h that the strongmat
hing MB (or indi�erently MR) interse
ts every square, a 
ontradi
tion.Thus, G does not exist and Theorem 4.7 is proved.
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ubi
 graph. Then G 
an be fa
tored into twoodd linear forests L = (LB , LR) su
h that(i) Ea
h path in LB has odd length at most 3,(ii) Ea
h path in LR has odd length at least 3if and only if χ′(G) = 3.
P roof. Assume that G has an odd linear partition L = (LB , LR) withthese properties. As in Theorem 4.1 we get immediately a 3-edge 
olouring.Conversely, let α and β be two 
olours of a 3-edge 
olouring Φ of Gand let SMG(α, β) be a minimal strong mat
hing interse
ting ea
h 
y
le of
Φ(α, β). If Γ denotes the set of edges 
oloured by γ then LB = Γ+SMG(α, β)is a set of odd paths of length at most 3. While LR = Φ(α, β) \ SMG(α, β)is a set of odd paths of length at least 3 (re
all that, G being simple, everybi
oloured 
y
le has length at least 4). Hen
e, (LB, LR) is an odd linearpartition satisfying 
onditions (i) and (ii).4.3. Uni
oloured transversalIn this se
tion we derive from Theorem 4.7 a result on uni
oloured transver-sals of the 2-fa
tors indu
ed by any 3 edge-
olouring of a 
ubi
 graph with
hromati
 index 3. Let us �rst state a useful Lemma (folklore).Lemma 4.9. Let G = (V,E) be a multi-graph then it is always possibleto give an orientation to its edge set in su
h a way that for any vertex v
|d+(v) − d−(v)| ≤ 1 (where d+(v) denotes as usual the outdegree of v and
d−(v) its indegree).
P roof. Without loss of generality we 
onsider that G is 
onne
ted. Adda mat
hing of extra edges between verti
es of odd degrees in G (sin
e thereis an even number of verti
es with odd degree) in order to get an eule-rian graph G′. We orient the edges of G′ following an eulerian tour. It isa routine matter to 
he
k that the orientation indu
ed in G satis�es ourrequirement.Theorem 4.10. Let G be a 
ubi
 3-edge 
olourable graph and let Φ be a
3-edge 
olouring of G. Let α and β be any two distin
t 
olours of Φ and let γbe the third 
olour. Then there exists a set Fα of α-edges interse
ting every
y
le belonging to the 2-fa
tor Φ(α, β) su
h that the set Fα together with the
γ-edges has no 
y
le.
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P roof. We know by Theorem 4.7 that there exists a strong mat
hing
SMG(α, β) interse
ting every 
y
le of the 2-fa
tor Φ(α, β).Let A be the set of α-edges of SMG(α, β) while B is the set of remaining
β-edges of SMG(α, β). We may assume that B is not empty, for otherwisewe set Fα = A and we are done.Let A′ be the set of α-edges of G whi
h are in
ident to an edge of B.For ea
h edge e ∈ A′, the atta
hment vertex of e will be the vertex in
identto the edge of B. B being a strong mat
hing this atta
hment vertex is wellde�ned. We intend to de�ne Fα as a subset of A∪A′ whi
h 
ontains A andthus we fo
us on the αγ-
y
les of G whose α-edges belong to A ∪ A′.Claim. An αγ-
y
le of G whose all α-edges belong to A∪A′ 
annot 
ontainany edge of A.
P roof. Let C = x0y0x1y1 . . . xkyk be an αγ-
y
le of G whose all α-edgesbelong to A ∪ A′. Assume that xiyi are α-edges while yixi+1 are γ-edges(i being taken modulo k + 1). Let us suppose that x0y0 ∈ A. The edge
x1y1 is 
ertainly in A′, otherwise A should not be a strong mat
hing. Theatta
hement vertex of x1y1 
annot be x1 otherwise A ∪ B is not a strongmat
hing. Considering now x2y2, we 
an say that this edge is not in A(otherwise A∪B is not a strong mat
hing) and its atta
hment vertex 
annotbe x2 (otherwise B is not a strong mat
hing). Running through the set of α-edges xiyi we 
an show in the same way that these edges are in A′ and theiratta
hment verti
es are 
ertainly the yi's. We obtain thus a 
ontradi
tionwith xkyk sin
e this edge is in A′ and its atta
hment vertex is yk whi
h isimpossible sin
e yk is adja
ent to x0.Let C be the set of γ-edges whi
h are in
ident to an edge of A′ and H be thesubgraph of G whose edge-set is A′∪C, obviously the 
onne
ted 
omponentsof H are paths or 
y
les. By Claim every αγ-
y
le of G whose all α-edgesbelong to A ∪ A′ is also a 
y
le of H.Every edge of B is in
ident in G to a 
onne
ted 
omponent of H, thuswe de�ne an auxiliary graph, namely H ′, in the following way: the verti
esof H ′ are the 
onne
ted 
omponents of H while it's edge-set is B. Sin
eevery 
onne
ted 
omponent of H 
ontains at least one edge of A′ there is noisolated vertex in H ′.Using Lemma 4.9, we 
an �nd an orientation of the edges of H ′ su
hthat every vertex of H ′ of degree at least 2 has an in-going edge and anout-going edge.
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t of theprevious orientation of H ′ and we de�ne an inje
tive mapping f : B −→ A′:given an edge e of B, f(e) is the α-edge of A′ whose atta
hment vertex is
o(e).We set Fα = A ∪ {f(e)|e ∈ B}. Observe that Fα is a set of α-edges.Sin
e A ∪ B 
overs all αβ-
y
les of G and sin
e e and f(e) belong to thesame αβ-
y
le of G, Fα 
overs all αβ-
y
les of G. Moreover, suppose that
C is an αγ-
y
le of G whose α-edges are members of Fα. Then C is an αγ-
y
le of H and has a vertex of degree at least 2 in H ′. But now, the α-edgeof C whi
h is in
ident to an out-going edge of C does not belong to Fα,a 
ontradi
tion.Remark 4.11. It is possible to derive a linear time algorithm for the 
on-stru
tion of the uni
oloured transversal Fα of Theorem 4.10 on
e the 3-edge
olouring Φ and the strong mat
hing des
ribed in Theorem 4.7 are given.Referen
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