DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 26(1) (2006) 113-134
DOI: https://doi.org/10.7151/dmgt.1306

ON THE BASIS NUMBER AND THE MINIMUM CYCLE BASES OF THE WREATH PRODUCT OF SOME GRAPHS I

Mohammed M.M. Jaradat

Department of Mathematics
Yarmouk University
Irbid-Jordan
e-mail: mmjst4@yu.edu.jo

Abstract

A construction of a minimum cycle bases for the wreath product of some classes of graphs is presented. Moreover, the basis numbers for the wreath product of the same classes are determined.

Keywords: cycle space, basis number, cycle basis, wreath product.

2000 Mathematics Subject Classification: 05C38, 05C75.

References

[1] M. Anderson and M. Lipman, The wreath product of graphs, in: Graphs and Applications (Boulder, Colo., 1982), (Wiley-Intersci. Publ., Wiley, New York, 1985) 23-39.
[2] A.A. Ali, The basis number of complete multipartite graphs, Ars Combin. 28 (1989) 41-49.
[3] A.A. Ali, The basis number of the direct product of paths and cycles, Ars Combin. 27 (1989) 155-163.
[4] A.A. Ali and G.T. Marougi, The basis number of cartesian product of some graphs, J. Indian Math. Soc. 58 (1992) 123-134.
[5] A.S. Alsardary and J. Wojciechowski, The basis number of the powers of the complete graph, Discrete Math. 188 (1998) 13-25, doi: 10.1016/S0012-365X(97)00271-9.
[6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (America Elsevier Publishing Co. Inc., New York, 1976).
[7] W.-K. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math. 20 (1971) 525-529, doi: 10.1137/0120054.
[8] D.M. Chickering, D. Geiger and D. HecKerman, On finding a cycle basis with a shortest maximal cycle, Inform. Process. Lett. 54 (1994) 55-58, doi: 10.1016/0020-0190(94)00231-M.
[9] L.O. Chua and L. Chen, On optimally sparse cycles and coboundary basis for a linear graph, IEEE Trans. Circuit Theory 20 (1973) 54-76.
[10] G.M. Downs, V.J. Gillet, J.D. Holliday and M.F. Lynch, Review of ring perception algorithms for chemical graphs, J. Chem. Inf. Comput. Sci. 29 (1989) 172-187, doi: 10.1021/ci00063a007.
[11] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).
[12] W. Imrich and P. Stadler, Minimum cycle bases of product graphs, Australas. J. Combin. 26 (2002) 233-244.
[13] M.M.M. Jaradat, On the basis number of the direct product of graphs, Australas. J. Combin. 27 (2003) 293-306.
[14] M.M.M. Jaradat, The basis number of the direct product of a theta graph and a path, Ars Combin. 75 (2005) 105-111.
[15] M.M.M. Jaradat, An upper bound of the basis number of the strong product of graphs, Discuss. Math. Graph Theory 25 (2005) 391-406, doi: 10.7151/dmgt.1291.
[16] M.M.M. Jaradat, M.Y. Alzoubi and E.A. Rawashdeh, The basis number of the Lexicographic product of different ladders, SUT J. Math. 40 (2004) 91-101.
[17] A. Kaveh, Structural Mechanics, Graph and Matrix Methods. Research Studies Press (Exeter, UK, 1992).
[18] G. Liu, On connectivities of tree graphs, J. Graph Theory 12 (1988) 435-459, doi: 10.1002/jgt.3190120318.
[19] S. MacLane, A combinatorial condition for planar graphs, Fundamenta Math. 28 (1937) 22-32.
[20] M. Plotkin, Mathematical basis of ring-finding algorithms in CIDS, J. Chem. Doc. 11 (1971) 60-63, doi: 10.1021/c160040a013.
[21] E.F. Schmeichel, The basis number of a graph, J. Combin. Theory (B) 30 (1981) 123-129, doi: 10.1016/0095-8956(81)90057-5.
[22] P. Vismara, Union of all the minimum cycle bases of a graph, Electr. J. Combin. 4 (1997) 73-87.
[23] D.J.A. Welsh, Kruskal's theorem for matroids, Proc. Cambridge Phil, Soc. 64 (1968) 3-4, doi: 10.1017/S030500410004247X.

Received 3 March 2005
Revised 9 September 2005


Close