ON THE BASIS NUMBER AND THE MINIMUM CYCLE BASES OF THE WREATH PRODUCT OF SOME GRAPHS I

Mohammed M.M. Jaradat
Department of Mathematics
Yarmouk University
Irbid-Jordan
e-mail: mmjst4@yu.edu.jo

Abstract

A construction of a minimum cycle bases for the wreath product of some classes of graphs is presented. Moreover, the basis numbers for the wreath product of the same classes are determined.

Keywords: cycle space, basis number, cycle basis, wreath product.
2000 Mathematics Subject Classification: 05C38, 05C75.

1. Introduction

The basis number of a graph is one of the numbers which give rise to a better understanding and interpretations of a geometric properties of a graph (see [19]). Minimum cycle bases (MCBs) of a cycle spaces have a variety of applications in sciences and engineering, for example, in structural flexibility analysis, electrical networks, and in chemical structure storage and retrieval systems (see [9, 10] and [17]).

In general, required cycle bases, and minimum cycle bases are not very well behaved under graph operations. Neither the basis number $b(G)$ of a graph G is monotonic (see [3] and [21]), nor the total length $l(G)$ and the length of the longest cycle in a minimum cycle basis $\lambda(G)$ are minor monotone (see [12]). Hence, there does not seem to be a general way of
extending required cycle bases and minimum cycle bases of a certain collection of partial graphs of G to a required cycle basis and to a minimum cycle basis of G, respectively. Global upper bounds $b(G) \leq 2 \gamma(G)+2$ and $l(G) \leq \operatorname{dim} \mathcal{C}(G)+\kappa(T(G))$ where $\gamma(G)$ is the genus of G and $\kappa(T(G))$ is the connectivity of the tree graph of G are proven in [21] and [18], respectively.

In this paper, we investigate the basis number for some classes of graphs and we construct minimum cycle bases for same, also, we give their total lengths and the length of longest cycles.

2. Definitions and Preliminaries

The graphs considered in this paper are finite, undirected, simple and connected. Most of the notations that follow can be found in [6]. For a given graph G, we denote the vertex set of G by $V(G)$ and the edge set by $E(G)$.

2..1 Cycle bases

Given a graph G, let $e_{1}, e_{2}, \ldots, e_{|E(G)|}$ be an ordering of its edges. Then a subset S of $E(G)$ corresponds to a $(0,1)$-vector $\left(b_{1}, b_{2}, \ldots, b_{|E(G)|}\right)$ in the usual way with $b_{i}=1$ if $e_{i} \in S$, and $b_{i}=0$ if $e_{i} \notin S$. These vectors form an $|E(G)|$-dimensional vector space, denoted by $\left(Z_{2}\right)^{|E(G)|}$, over the field of integers modulo 2. The vectors in $\left(Z_{2}\right)^{|E(G)|}$ which correspond to the cycles in G generate a subspace called the cycle space of G and denoted by $\mathcal{C}(G)$. We shall say that the cycles themselves, rather than the vectors corresponding to them, generate $\mathcal{C}(G)$. It is known that for a connected graph $G \operatorname{dim} \mathcal{C}(G)=|E(G)|-|V(G)|+1$ (see [7]).

A basis \mathcal{B} for $\mathcal{C}(G)$ is called a cycle basis of G. A cycle basis \mathcal{B} of G is called a d-fold if each edge of G occurs in at most d of the cycles in \mathcal{B}. The basis number, $b(G)$, of G is the least non-negative integer d such that $\mathcal{C}(G)$ has a d-fold basis. The length, $|C|$, of the element C of the cycle space $\mathcal{C}(G)$ is the number of its edges. The length $l(\mathcal{B})$ of a cycle basis \mathcal{B} is the sum of the lengths of its elements: $l(\mathcal{B})=\sum_{C \in \mathcal{B}}|C| . \lambda(G)$ is defined to be the minimum length of the longest element in an arbitrary cycle basis of G. A minimum cycle basis (MCB) is a cycle basis with minimum length. Since the cycle space $\mathcal{C}(G)$ is a matroid in which an element C has weight $|C|$, the greedy algorithm can be used to extract a MCB (see [23]). The following results will be used frequently in the sequel.

Theorem 1.1.1 (MacLane). The Graph G is planar if and only if $b(G) \leq 2$.

A cycle is relevant if it is contained in some MCB (see [22]).
Proposition 1.1.2 (Plotkin). A cycle C is relevant if and only if it cannot be written as a linear combinations modulo 2 of shorter cycles.

Chickering, Geiger and Heckerman [8], showed that $\lambda(G)$ is the length of the longest element in a MCB.

2..2 Products

Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$ be two graphs.
(1) The cartesian product $G \square H$ has the vertex set $V(G \square H)=V(G) \times$ $V(H)$ and the edge set $E(G \square H)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1} u_{2} \in E(G)\right.$ and $v_{1}=$ v_{2}, or $v_{1} v_{2} \in E(H)$ and $\left.u_{1}=u_{2}\right\}$.
(2) The direct product $G \times H$ is the graph with the vertex set $V(G \times H)=$ $V(G) \times V(H)$ and the edge set $E(G \times H)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E(G)\right.$ and $\left.u_{2} v_{2} \in E(H)\right\}$.
(3) The strong product $G \boxtimes H$ is the graph with the vertex set $V(G \boxtimes H)=$ $V(G) \times V(H)$ and the edge set $E(G \boxtimes H)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E(G)\right.$ and $u_{2} v_{2} \in E(H)$ or $u_{1}=v_{1}$ and $u_{2} v_{2} \in E(H)$ or $u_{1} v_{1} \in E(G)$ and $\left.u_{2}=v_{2}\right\}$.
(4) The semi-strong product $G_{1} \bullet G_{2}$ is the graph with the vertex set $V(G \bullet H)=V(G) \times V(H)$ and the edge set $E(G \bullet H)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in\right.$ $E(G)$ and $u_{2} v_{2} \in E(H)$ or $u_{1}=v_{1}$ and $\left.u_{2} v_{2} \in E(H)\right\}$.
(5) The lexicographic product $G_{1}\left[G_{2}\right]$ is the graph with vertex set $V(G[H])=V(G) \times V(H)$ and the edge set $E(G[H])=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1}=\right.$ v_{1} and $u_{2} v_{2} \in E(H)$ or $\left.u_{1} v_{1} \in E(G)\right\}$.
(6) The wreath product $G \ltimes H$ has the vertex set $V(G \ltimes H)=V(G) \times$ $V(H)$ and the edge set $E(G \ltimes H)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1}=u_{2}\right.$ and $v_{1} v_{2} \in H$, or $u_{1} u_{2} \in G$ and there is $\alpha \in \operatorname{Aut}(H)$ such that $\left.\alpha\left(v_{1}\right)=v_{2}\right\}$ (see [1] and [11]).

Many authors studied the basis number and the minimum cycle bases of graph products. The cartesian product of any two graphs was studied by Ali and Marougi [4] and Imrich and Stadler [12].

Theorem 1.2.1 (Ali and Marougi). If G and H are two connected disjoint graphs, then $b(G \square H) \leq \max \left\{b(G)+\triangle\left(T_{H}\right), b(H)+\triangle\left(T_{G}\right)\right\}$ where T_{H} and T_{G} are spanning trees of H and G, respectively, such that the maximum degrees $\triangle\left(T_{H}\right)$ and $\Delta\left(T_{G}\right)$ are minimum with respect to all spanning trees of H and G.

Theorem 1.2.2 (Imrich and Stadler). If G and H are triangle free, then $l(G \square H)=l(G)+l(H)+4[|E(G)|(|V(H)|-1)+|E(H)|(|V(G)|-1)-$ $(|V(H)|-1)(|V(G)|-1)]$ and $\lambda(G \square H)=\max \{4, \lambda(G), \lambda(H)\}$.

Schmeichel [21], Ali [2, 3] and Jaradat [13] gave an upper bound for the basis number of the semi-strong and the direct products of some special graphs. They proved the following results:

Theorem 1.2.3 (Schmeichel). For each $n \geq 7, b\left(K_{n} \bullet P_{2}\right)=4$.
Theorem 1.2.4 (Ali). For each integers $n, m, b\left(K_{m} \bullet K_{n}\right) \leq 9$.
Theorem 1.2.5 (Ali). For any two cycles C_{n} and C_{m} with $n, m \geq 3$, $b\left(C_{n} \times C_{m}\right)=3$.

Theorem 1.2.6 (Jaradat). For each bipartite graphs G and H, $b(G \times H) \leq 5+b(G)+b(H)$.

Theorem 1.2.7 (Jaradat). For each bipartite graph G and cycle C, $b(G \times C) \leq 3+b(G)$.

The strong product was studied by Imrich and Stadler [12] and Jaradat [15]. They gave the following results:

Theorem 1.2.8 (Imrich and Stadler). For any two graphs G and $H, l(G \boxtimes$ $H)=l(G)+l(H)+3[\operatorname{dim} C(G \boxtimes H)-\operatorname{dim} C(G)-\operatorname{dim} C(H)]$ and $\lambda(G \boxtimes H)=$ $\max \{3, \lambda(G), \lambda(H)\}$.

Theorem 1.2.9 (Jaradat). Let G be a bipartite graph and H be a graph. Then $b(G \boxtimes H) \leq \max \left\{b(H)+1,2 \Delta(H)+b(G)-1,\left\lfloor\frac{3 \Delta\left(T_{G}\right)+1}{2}\right\rfloor, b(G)+2\right\}$.

The results cited above trigger off the following question: Can we construct a minimum cycle basis and find the basis number of the wreath product of graphs? In this paper we will answer this question for a class of graphs. In fact, we construct a minimum cycle basis of the wreath product of two paths, a cycle with a path, a path with a star, a cycle with a star, a path with a wheel and a cycle with a wheel and we give their basis numbers. Moreover, we give the total lengths and lengths of longest cycles of the minimum cycle bases of the same.

In the rest of this paper, $f_{B}(e)$ stand for the number of elements of B containing the edge e where $B \subseteq \mathcal{C}(G)$.

3. The Basis Number of the Wreath Product of Graphs

In this section, we investigate the basis number of the wreath product of two paths, a cycle with a path, a path with a star, a cycle with a star, a path with a wheel and a cycle with a wheel. Also, in this section, we shall say \mathcal{B} is a basis of $\mathcal{C}(G)$, rather than saying \mathcal{B} is a cycle basis of G. Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a set of vertices and $a b$ be an edge. Also, let $P_{m}=v_{1} v_{2} \ldots v_{m}$. Then the automorphism group of the path P_{m} consists of two elements the identity, I, and the automorphism α which is defined as follows:

$$
\alpha\left(v_{i}\right)=v_{m-j+1}, j=1,2, \ldots, m
$$

Therefore, $a b \ltimes P_{m}$ is decomposable into $a b \square P_{m} \cup M_{1}$ where M_{1} is the graph with the edge set $\left\{\left(a, v_{j}\right)\left(b, v_{m-j+1}\right),\left(a, v_{m-j+1}\right)\left(b, v_{j}\right) \mid j=1,2, \ldots,\lfloor m / 2\rfloor\right\}$. Now, we define the following sets of cycles (see Figure 1):

Figure 1. These graphs illustrate the cycles $\mathcal{K}_{a b}^{(j)}, \mathcal{N}_{a b}^{(j)}, \mathcal{R}_{a b}^{(j)}, \mathcal{Z}_{a b}^{(1)}, \mathcal{Z}_{a b}^{(2)}, \mathcal{Z}_{a b}^{(3)}$ and $\mathcal{Z}_{a b}^{(4)}$ for even m.

$$
\begin{gathered}
\mathcal{K}_{a b}=\left\{\mathcal{K}_{a b}^{(j)}=\left(a, v_{j}\right)\left(b, v_{j}\right)\left(b, v_{j+1}\right)\left(a, v_{j+1}\right)\left(a, v_{j}\right) \mid j=1,2, \ldots, m-1\right\}, \\
\mathcal{N}_{a b}=\left\{\mathcal{N}_{a b}^{(j)}=\left(a, v_{j}\right)\left(b, v_{j}\right)\left(a, v_{m-j+1}\right)\left(b, v_{m-j+1}\right)\left(a, v_{j}\right) \mid j=1,2, \ldots,\lfloor m / 2\rfloor\right\}, \\
\mathcal{R}_{a b}=\left\{\mathcal{R}_{a b}^{(j)}=\left(a, v_{j}\right)\left(a, v_{j+1}\right)\left(b, v_{m-j}\right)\left(b, v_{m-j+1}\right)\left(a, v_{j}\right) \mid j=1,2, \ldots,\lfloor m / 2\rfloor\right\}, \\
\mathcal{Z}_{a b}=\left\{\begin{array}{l}
\mathcal{Z}_{a b}^{(1)}=\left(a, v_{\lfloor m / 2\rfloor}\right)\left(b, v_{\lfloor m / 2\rfloor+1}\right)\left(a, v_{\lfloor m / 2\rfloor+1}\right)\left(a, v_{\lfloor m / 2\rfloor}\right), \\
\mathcal{Z}_{a b}^{(2)}=\left(a, v_{\lfloor m / 2\rfloor}\right)\left(b, v_{\lfloor m / 2\rfloor}\right)\left(b, v_{\lfloor m / 2\rfloor+1}\right)\left(a, v_{\lfloor m / 2\rfloor}\right), \\
\mathcal{Z}_{a b}^{(3)}=\left(a, v_{\lfloor m / 2\rfloor}\right)\left(a, v_{\lfloor m / 2\rfloor+1}\right)\left(b, v_{\lfloor m / 2\rfloor}\right)\left(a, v_{\lfloor m / 2\rfloor}\right), \\
\mathcal{Z}_{a b}^{(4)}=\left(a, v_{\lfloor m / 2\rfloor+1}\right)\left(b, v_{\lfloor m / 2\rfloor}\right)\left(b, v_{\lfloor m / 2\rfloor+1}\right)\left(a, v_{\lfloor m / 2\rfloor+1}\right)
\end{array}\right\} .
\end{gathered}
$$

Lemma 3.1. Let m be an odd integer. Then $\mathcal{A}_{a b}=\mathcal{K}_{a b} \cup \mathcal{N}_{a b} \cup \mathcal{R}_{a b}$ is a linearly independent subset of $\mathcal{C}\left(a b \ltimes P_{m}\right)$.

Proof. We prove that $\mathcal{K}_{a b}$ is linearly independent using mathematical induction on m. If $m=1$, then $\mathcal{K}_{a b}$ consists only of one cycle $\mathcal{K}_{a b}^{(1)}$. Thus, $\mathcal{K}_{a b}$ is linearly independent. Assume that m is greater than 2 and it is true for less than m. Note that $\mathcal{K}_{a b}=\left(\cup_{j=1}^{m-2} \mathcal{K}_{a b}^{(j)}\right) \cup \mathcal{K}_{a b}^{(m-1)}$. Since $\mathcal{K}_{a b}^{(m-1)}$ contains the edge $\left(a, v_{m}\right)\left(b, v_{m}\right)$ which is not in any cycle of $\cup_{j=1}^{m-2} \mathcal{K}_{a b}^{(j)}$, as a result $\mathcal{K}_{a b}$ is linearly independent. By a similar way we show that each of $\mathcal{N}_{a b}$ and $\mathcal{R}_{a b}$ are linearly independent. Any linear combination of cycles of $\mathcal{R}_{a b}$ must contain an edge of the form $\left(b, v_{m-j+1}\right)\left(a, v_{j}\right)$ for some $1 \leq j \leq\lfloor m / 2\rfloor$, which is not in any cycle of $\mathcal{K}_{a b}$. Thus, $\mathcal{K}_{a b} \cup \mathcal{R}_{a b}$ is linearly independent. Similarly, each linear combination of $\mathcal{N}_{a b}$ contains an edge of the form $\left(b, v_{j}\right)\left(a, v_{m-j+1}\right)$ for some $1 \leq j \leq\lfloor m / 2\rfloor$, which is not in any cycle of $\mathcal{K}_{a b} \cup \mathcal{R}_{a b}$. Therefore, $\mathcal{A}_{a b}$ is linearly independent. The proof is complete.

Remark 3.1. For an odd integer m let $e \in a b \ltimes P_{m}$. Then
(1) if $e=\left(a, v_{j}\right)\left(a, v_{j+1}\right)$ such that $j \leq\lfloor m / 2\rfloor$, then $f_{\mathcal{K}_{a b}}(e)=f_{\mathcal{R}_{a b}}(e)=1$ and $f_{\mathcal{N}_{a b}}(e)=0$.
(2) If $e=\left(a, v_{j}\right)\left(a, v_{j+1}\right)$ such that $j \geq\lfloor m / 2\rfloor+1$, then $f_{\mathcal{K}_{a b}}(e)=1$ and $f_{\mathcal{R}_{a b}}(e)=f_{\mathcal{N}_{a b}}(e)=0$.
(3) If $e=\left(b, v_{j}\right)\left(b, v_{j+1}\right)$ such that $j \leq\lfloor m / 2\rfloor$, then $f_{\mathcal{K}_{a b}}(e)=1$ and $f_{\mathcal{R}_{a b}}(e)=f_{\mathcal{N}_{a b}}(e)=0$.
(4) If $e=\left(b, v_{j}\right)\left(b, v_{j+1}\right)$ such that $j \geq\lfloor m / 2\rfloor+1$, then $f_{\mathcal{K}_{a b}}(e)=f_{\mathcal{R}_{a b}}(e)=1$ and $f_{\mathcal{N}_{a b}}(e)=0$.
(5) If $e=\left(a, v_{j}\right)\left(b, v_{j}\right)$ such that $j \neq\lfloor m / 2\rfloor+1$, then $f_{\mathcal{K}_{a b}}(e) \leq 2, f_{\mathcal{R}_{a b}}(e)=$ 0 and $f_{\mathcal{N}_{a b}}(e)=1$.
(6) If $e=\left(a, v_{\lfloor m / 2\rfloor+1}\right)\left(b, v_{\lfloor m / 2\rfloor+1}\right)$, then $f_{\mathcal{K}_{a b}}(e)=2, f_{\mathcal{R}_{a b}}(e)=1$ and $f_{\mathcal{N}_{a b}}(e)=0$.
(7) If $e=\left(a, v_{j}\right)\left(b, v_{m-j+1}\right)$ such that $j \leq\lfloor m / 2\rfloor$, then $f_{\mathcal{K}_{a b}}(e)=0$, $f_{\mathcal{R}_{a b}}(e) \leq 2$ and $f_{\mathcal{N}_{a b}}(e)=1$.
(8) If $e=\left(b, v_{j}\right)\left(a, v_{m-j+1}\right)$ such that $j \leq\lfloor m / 2\rfloor$, then $f_{\mathcal{K}_{a b}}(e)=f_{\mathcal{R}_{a b}}(e)=$ 0 and $f_{\mathcal{N}_{a b}}(e)=1$.

Lemma 3.2. Let m be an even integer. Then $\mathcal{T}_{a b}=\mathcal{K}_{a b} \cup \mathcal{N}_{a b} \cup \mathcal{R}_{a b} \cup$ $\left\{\mathcal{Z}_{a b}^{(1)}, \mathcal{Z}_{a b}^{(2)}, \mathcal{Z}_{a b}^{(3)}\right\}-\left\{\mathcal{K}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{N}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{R}_{a b}^{(\lfloor m / 2\rfloor)}\right\}$ is a linearly independent subset of $\mathcal{C}\left(a b \ltimes P_{m}\right)$.

Proof. Using the same argument as in Lemma 3.1, we have that $\mathcal{K}_{a b} \cup$ $\mathcal{N}_{a b} \cup \mathcal{R}_{a b}-\left\{\mathcal{K}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{N}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{R}_{a b}^{(\lfloor m / 2\rfloor)}\right\}$ is linearly independent. Since $\mathcal{Z}_{a b}^{(1)}$ contains $\left(a, v_{\lfloor m / 2\rfloor}\right)\left(a, v_{\lfloor m / 2\rfloor+1}\right)$ which is not in any cycle of $\mathcal{K}_{a b} \cup \mathcal{N}_{a b} \cup$ $\mathcal{R}_{a b}-\left\{\mathcal{K}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{N}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{R}_{a b}^{(\lfloor m / 2\rfloor)}\right\}, \mathcal{K}_{a b} \cup \mathcal{N}_{a b} \cup \mathcal{R}_{a b} \cup\left\{\mathcal{Z}_{a b}^{(1)}\right\}-\left\{\mathcal{K}_{a b}^{(\lfloor m / 2\rfloor)}\right.$, $\left.\mathcal{N}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{R}_{a b}^{(\lfloor m / 2\rfloor)}\right\}$ is linearly independent. Also, $\mathcal{Z}_{a b}^{(2)}$ contains $\left(b, v_{\lfloor m / 2\rfloor}\right)$ (b, $\left.v_{\lfloor m / 2\rfloor+1}\right)$ which is not in any cycle of $\mathcal{K}_{a b} \cup \mathcal{N}_{a b} \cup \mathcal{R}_{a b} \cup\left\{\mathcal{Z}_{a b}^{(1)}\right\}-\left\{\mathcal{K}_{a b}^{(\lfloor m / 2\rfloor)}\right.$, $\left.\mathcal{N}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{R}_{a b}^{(\lfloor m / 2\rfloor)}\right\}$. Hence, $\mathcal{K}_{a b} \cup \mathcal{N}_{a b} \cup \mathcal{R}_{a b} \cup\left\{\mathcal{Z}_{a b}^{(1)}, \mathcal{Z}_{a b}^{(2)}\right\}-\left\{\mathcal{K}_{a b}^{(\lfloor m / 2\rfloor)}\right.$, $\left.\mathcal{N}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{R}_{a b}^{(\lfloor m / 2\rfloor)}\right\}$ is linearly independent. Similarly, $\mathcal{Z}_{a b}^{(3)}$ contains the edge $\left(a, v_{\lfloor m / 2\rfloor+1}\right)\left(b, v_{\lfloor m / 2\rfloor}\right)$ which is not in any cycle of $\mathcal{K}_{a b} \cup \mathcal{N}_{a b} \cup \mathcal{R}_{a b} \cup$ $\left\{\mathcal{Z}_{a b}^{(1)}, \mathcal{Z}_{a b}^{(2)}\right\}-\left\{\mathcal{K}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{N}_{a b}^{(\lfloor m / 2\rfloor)}, \mathcal{R}_{a b}^{(\lfloor m / 2\rfloor)}\right\}$. Therefore, $\mathcal{T}_{a b}$ is linearly independent. The proof is complete.
Throughout this paper we consider $\mathcal{B}_{a b}= \begin{cases}\mathcal{A}_{a b}, & \text { if } m \text { is odd, } \\ \mathcal{T}_{a b}, & \text { if } m \text { is even. }\end{cases}$
Remark 3.2. For any integer m let $e \in a b \ltimes P_{m}$. Then from Lemma 3.1 and Lemma 3.2 and as in Remark 3.1 we have that
(1) if $e=\left(a, v_{j}\right)\left(a, v_{j+1}\right)$ such that $j \leq\lfloor m / 2\rfloor$, then $f_{\mathcal{B}_{a b}}(e) \leq 2$.
(2) If $e=\left(a, v_{j}\right)\left(a, v_{j+1}\right)$ such that $j \geq\lfloor m / 2\rfloor+1$, then $f_{\mathcal{B}_{a b}}(e)=1$.
(3) If $e=\left(b, v_{j}\right)\left(b, v_{j+1}\right)$ such that $j \leq\lfloor m / 2\rfloor$, then $f_{\mathcal{B}_{a b}}(e)=1$.
(4) If $e=\left(b, v_{j}\right)\left(b, v_{j+1}\right)$ such that $j \geq\lfloor m / 2\rfloor+1$, then $f_{\mathcal{B}_{a b}}(e) \leq 2$.
(5) If $e=\left(a, v_{j}\right)\left(b, v_{j}\right)$ such that $j \neq 1, m$, then $f_{\mathcal{B}_{a b}}(e) \leq 3$.
(6) If $e=\left(a, v_{1}\right)\left(b, v_{1}\right)$ or $\left(a, v_{m}\right)\left(b, v_{m}\right)$, then $f_{\mathcal{B}_{a b}}(e) \leq 2$.
(7) If $e=\left(a, v_{j}\right)\left(b, v_{m-j+1}\right)$ such that $j \leq\lfloor m / 2\rfloor$, then $f_{\mathcal{B}_{a b}}(e) \leq 3$.
(8) If $e=\left(b, v_{j}\right)\left(a, v_{m-j+1}\right)$ such that $j \leq\lfloor m / 2\rfloor$, then $f_{\mathcal{B}_{a b}}(e)=1$.

Lemma 3.3. If $m \geq 3$, then $b\left(a b \ltimes P_{m}\right) \geq 3$.
Proof. Case 1. m is odd. Let H_{1} be the subgraph of $a b \ltimes P_{m}$ induced by the following set of vertices $\left\{\left(a, v_{\lfloor m / 2\rfloor}\right),\left(a, v_{\lfloor m / 2\rfloor+2}\right),\left(b, v_{\lfloor m / 2\rfloor+1}\right),\left(b, v_{\lfloor m / 2\rfloor}\right)\right.$, $\left.\left(b, v_{\lfloor m / 2\rfloor+2}\right),\left(a, v_{\lfloor m / 2\rfloor+1}\right)\right\}$. Then H_{1} is isomorphic to $K_{3,3}$ and so by MacLane's Theorem $b\left(a b \ltimes P_{m}\right) \geq 3$.

Case 2. m is even. Let H_{2} be the subgraph with vertex set $\left\{\left(a, v_{\lfloor m / 2\rfloor-1}\right)\right.$, $\left(a, v_{\lfloor m / 2\rfloor}\right),\left(a, v_{\lfloor m / 2\rfloor+1}\right),\left(a, v_{\lfloor m / 2\rfloor+2}\right),\left(b, v_{\lfloor m / 2\rfloor-1}\right),\left(b, v_{\lfloor m / 2\rfloor}\right),\left(b, v_{\lfloor m / 2\rfloor+1}\right)$, $\left.\left(b, v_{\lfloor m / 2\rfloor+2}\right)\right\}$ and edge set consists of the following nine paths: $P_{1}=$ $\left(a, v_{\lfloor m / 2\rfloor+1}\right)\left(a, v_{\lfloor m / 2\rfloor+2}\right)\left(b, v_{\lfloor m / 2\rfloor+2}\right), P_{2}=\left(a, v_{\lfloor m / 2\rfloor+1}\right)\left(a, v_{\lfloor m / 2\rfloor}\right), P_{3}=$ $\left(a, v_{\lfloor m / 2\rfloor+1}\right)\left(b, v_{\lfloor m / 2\rfloor}\right), P_{4}=\left(a, v_{\lfloor m / 2\rfloor}\right)\left(a, v_{\lfloor m / 2\rfloor-1}\right), P_{5}=\left(a, v_{\lfloor m / 2\rfloor}\right)(b$, $\left.v_{\lfloor m / 2\rfloor+1}\right), \quad P_{6}=\left(a, v_{\lfloor m / 2\rfloor-1}\right)\left(b, v_{\lfloor m / 2\rfloor-1}\right)\left(b, v_{\lfloor m / 2\rfloor}\right), \quad P_{7}=\left(a, v_{\lfloor m / 2\rfloor-1}\right)$ $\left(b, v_{\lfloor m / 2\rfloor+2}\right), P_{8}=\left(b, v_{\lfloor m / 2\rfloor}\right)\left(b, v_{\lfloor m / 2\rfloor+1}\right), P_{9}=\left(b, v_{\lfloor m / 2\rfloor+1}\right)\left(b, v_{\lfloor m / 2\rfloor+2}\right)$. Then H_{2} is homeomorphic to $K_{3,3}$. Thus, by MacLane's Theorem $b(a b \ltimes$ $\left.P_{m}\right) \geq 3$. The proof is complete.
Let $P_{n}=a_{1} a_{2} \ldots a_{n}$. Then the graph $P_{n} \ltimes P_{m}$ is decomposable into $P_{n} \square P_{m} \cup M_{2}$ where M_{2} is the graph consisting of the following edge set $\cup_{i=1}^{n-1}\left\{\left(a_{i}, v_{j}\right)\left(a_{i+1}, v_{n-j+1}\right),\left(a_{i}, v_{n-j+1}\right)\left(a_{i+1}, v_{j}\right) \mid j=1,2, \ldots,\lfloor m / 2\rfloor\right\}$. Hence, $\left|E\left(P_{n} \ltimes P_{m}\right)\right|=n(m-1)+m(n-1)+2(n-1)\lfloor m / 2\rfloor$. Therefore, $\operatorname{dim} \mathcal{C}\left(P_{n} \ltimes P_{m}\right)=n(m-1)+m(n-1)+2(n-1)\lfloor m / 2\rfloor-n m+1=$ $m n-n-m+2(n-1)\lfloor m / 2\rfloor+1$. The following lemma will be used frequently in the sequel.

Lemma 3.4 (Jaradat, Alzoubi and Rawashdeh). Let A and B be two linearly independent sets of cycles such that $E(A) \cap E(B)$ is an edge set of a forest. Then $A \cup B$ is linearly independent.

Theorem 3.5. Let P_{n} and P_{m} be two paths of order $n, m \geq 2$. Then $b\left(P_{n} \ltimes P_{m}\right) \leq 3$. Moreover, the equality holds if $n \geq 2$ and $m \geq 3$.

Proof. By Lemma 3.3 we have that $b\left(P_{n} \ltimes P_{m}\right) \geq 3$ for any $n \geq 2, m \geq 3$. To prove that $b\left(P_{n} \ltimes P_{m}\right) \leq 3$, it suffices to exhibit a 3 -fold cycle basis. Define $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)=\cup_{i=1}^{n-1} \mathcal{B}_{a_{i} a_{i+1}}$. We now show that $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)$ is linearly independent using mathematical induction on n. If $n=2$, then $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)=\mathcal{B}_{a_{1} a_{2}}$ which is linearly independent by Lemma 3.1 and 3.2. Assume $n \geq 3$ and it is true for less than or equal to $n-2$. Note that $\mathcal{B}\left(P_{n} \ltimes\right.$ $\left.P_{m}\right)=\left(\cup_{i=1}^{n-2} \mathcal{B}_{a_{i} a_{i+1}}\right) \cup\left(\mathcal{B}_{a_{n-1} a_{n}}\right)$ and $E\left(\cup_{i=1}^{n-2} \mathcal{B}_{a_{i} a_{i+1}}\right) \cap E\left(\mathcal{B}_{a_{n-1} a_{n}}\right)=$ $E\left(a_{n-1} \square P_{m}\right)$ which is an edge set of a path. Thus, by Lemma 3.4, $\mathcal{B}\left(P_{n} \ltimes\right.$ $\left.P_{m}\right)$ is linearly independent. Since

$$
\left|\mathcal{B}_{a_{i} a_{i+1}}\right|=\left|\mathcal{A}_{a_{i} a_{i+1}}\right|=(m-1)+2\lfloor m / 2\rfloor
$$

if m is odd, and

$$
\begin{aligned}
\left|\mathcal{B}_{a_{i} a_{i+1}}\right| & =\left|\mathcal{T}_{a_{i} a_{i+1}}\right|=(m-2)+2(\lfloor m / 2\rfloor-1)+3 \\
& =(m-1)+2\lfloor m / 2\rfloor
\end{aligned}
$$

if m is even, we obtain

$$
\begin{aligned}
\mathcal{B}\left(P_{n} \ltimes P_{m}\right) & =\sum_{i=1}^{n-1}\left|\mathcal{B}_{a_{i} a_{i+1}}\right| \\
& =(n-1)((m-1)+2\lfloor m / 2\rfloor) \\
& =m n-m-n+2(n-1)\lfloor m / 2\rfloor+1 \\
& =\operatorname{dim} \mathcal{C}\left(P_{n} \ltimes P_{m}\right) .
\end{aligned}
$$

Thus, $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)$ is a basis for $\mathcal{C}\left(P_{n} \ltimes P_{m}\right)$. We now show that $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)$ is a 3 -fold basis. Let $e \in E\left(P_{n} \ltimes P_{m}\right)$. Then
(1) If $e=\left(a_{i}, v_{j}\right)\left(a_{i}, v_{j+1}\right)$ such that $j \leq\lfloor m / 2\rfloor$, then $f_{\mathcal{B}\left(P_{n} \ltimes P_{m}\right)}(e)=$ $f_{\mathcal{B}_{a_{i-1} a_{i}}}(e)+f_{\mathcal{B}_{a_{i} a_{i+1}}}(e)=1+2=3$.
(2) If $e=\left(a_{i}, v_{j}\right)\left(a_{i}, v_{j+1}\right)$ such that $j \geq\lfloor m / 2\rfloor+1$, then $f_{\mathcal{B}\left(P_{n} \ltimes P_{m}\right)}(e)=$ $f_{\mathcal{B}_{a_{i-1} a_{i}}}(e)+f_{\mathcal{B}_{a_{i} a_{i+1}}}(e)=2+1=3$.
(3) If e is not of the above form, then e belongs only to cycles of $\mathcal{B}_{a_{i} a_{i+1}}$ for some $1 \leq i \leq n-1$ and so $f_{\mathcal{B}\left(P_{n} \ltimes P_{m}\right)}(e)=f_{\mathcal{B}_{a_{i} a_{i+1}}}(e) \leq 3$.
The proof is complete.
Now we turn our attention to deal with $C_{n} \ltimes P_{m}$. Let $C_{n}=a_{1} a_{2} \ldots a_{n} a_{1}$. Note that $C_{n} \ltimes P_{m}$ is decomposable into $P_{n} \ltimes P_{m} \cup M_{3}$ where M_{3} is the subgraph consists of the following edges: $\left\{\left(a_{1}, v_{j}\right)\left(a_{n}, v_{j}\right) \mid j=1,2, \ldots, m\right\} \cup$
$\left\{\left(a_{1}, v_{j}\right)\left(a_{n}, v_{m-j+1}\right),\left(a_{1}, v_{m-j+1}\right)\left(a_{n}, v_{j}\right) \mid j=1,2, \ldots,\lfloor m / 2\rfloor\right\}$. Therefore, $\left|E\left(C_{n} \ltimes P_{m}\right)\right|=\left|E\left(P_{n} \ltimes P_{m}\right)\right|+m+2\lfloor m / 2\rfloor$ and so $\operatorname{dim} \mathcal{C}\left(C_{n} \ltimes P_{m}\right)=$ $\mathcal{C}\left(P_{n} \ltimes P_{m}\right)+m+2\lfloor m / 2\rfloor=m n-n+2 n\lfloor m / 2\rfloor+1$.
Let G and H be two graphs and $e=(a, u)(b, v) \in E(G \ltimes H)$. Then the projection of e in $G, P_{G}(e)$, is defined to be the edge $a b$ if $a \neq b$ and to be the vertex a if $a=b$ (see [12]).

Lemma 3.6. $C_{n} \square v_{i}$ is relevant in $C_{n} \ltimes P_{m}$ for each $i=1,2, \ldots, n$.
Proof. For simplicity assume that $e_{i}=a_{i} a_{i+1}$ for each $i=1,2, \ldots, n-1$ and $e_{n}=a_{n} a_{1}$. Let O be any cycle of $C_{n} \ltimes P_{m}$ of length less than n. Since

$$
E\left(e_{i} \ltimes P_{m}\right) \cap E\left(e_{j} \ltimes P_{m}\right)= \begin{cases}a_{j} \square P_{m}, & \text { if } j-i=1, n-1, \\ \phi, & \text { if } j-i \neq 1, n-1,\end{cases}
$$

(assuming $i<j$), as a result O consists of edges of successive graphs of $\left\{e_{r} \ltimes P_{m}\right\}_{r=1}^{n}$, say $e_{l+1} \ltimes P_{m}, e_{l+2} \ltimes P_{m}, \ldots, e_{l+k} \ltimes P_{m}$ for some $l, k<n$. Since $e_{i} \ltimes P_{m}=\left(a_{i} \square P_{m}\right) \cup\left(a_{i+1} \square P_{m}\right) \cup X_{i}$ where X_{i} is a bipartite graph with independent sets of vertices $a_{i} \times V\left(P_{m}\right)$ and $a_{i+1} \times V\left(P_{m}\right)$, as a result O contains even number of edges with projection e_{l+s} for each $s=1,2, \ldots, k$. Thus, if

$$
C_{n} \square v_{1}=\sum_{i=1}^{f} O_{i}(\bmod 2) .
$$

where O_{i} is a cycle of length less than n. Then the number of edge of the ring sum $O_{1} \oplus O_{2} \oplus \cdots \oplus O_{f}$ with projection e_{i} in C_{n} is even for each $i=1,2, \ldots, n$. In contrast, the number of edges of $C_{n} \square v_{1}$ with projection e_{i} in C_{n} is 1 for each $i=1,2, \ldots, n$. Thus, $C_{n} \square v_{1}$ is relevant. The proof is complete.

Theorem 3.7. Let C_{n} be a cycle and P_{m} be a path. Then $b\left(C_{n} \ltimes P_{m}\right)=3$.
Proof. By Lemma 3.3, to prove that $b\left(C_{n} \ltimes P_{m}\right) \geq 3$, it suffices to show that $b\left(C_{n} \ltimes P_{2}\right) \geq 3$. Let H be the spanning subgraph of $C_{n} \ltimes P_{2}$ with the edge set consists of the following paths: $\left(a_{1}, v_{1}\right)\left(a_{1}, v_{2}\right),\left(a_{2}, v_{1}\right)\left(a_{2}, v_{2}\right)$, $\left(a_{1}, v_{1}\right)\left(a_{2}, v_{2}\right),\left(a_{1}, v_{2}\right)\left(a_{2}, v_{1}\right),\left(a_{1}, v_{2}\right)\left(a_{n}, v_{1}\right),\left(a_{1}, v_{1}\right)\left(a_{n}, v_{2}\right),\left(a_{n}, v_{1}\right)$ $\left(a_{n}, v_{2}\right),\left(a_{2}, v_{2}\right)\left(a_{3}, v_{1}\right)\left(a_{4}, v_{1}\right) \ldots\left(a_{n}, v_{1}\right)$ and $\left(a_{2}, v_{1}\right)\left(a_{3}, v_{2}\right)\left(a_{4}, v_{2}\right) \ldots$ $\left(a_{n}, v_{2}\right)$. Then, H is homeomorphic to $K_{3,3}$ and so $b\left(C_{n} \ltimes P_{2}\right) \geq 3$. Define $\mathcal{B}\left(C_{n} \ltimes P_{m}\right)=\mathcal{B}\left(P_{n} \ltimes P_{m}\right) \cup \mathcal{B}_{a_{n} a_{1}} \cup\left\{C_{n} \square v_{1}\right\}$ where $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)$ is as defined in

Theorem 3.5. Now, since $E\left(P_{n} \ltimes P_{m}\right) \cap E\left(\mathcal{B}_{a_{n} a_{1}}\right)=E\left(a_{1} \square P_{m}\right) \cup E\left(a_{n} \square P_{m}\right)$ which is an edge set of a forest, by Lemma $3.4 \mathcal{B}\left(P_{n} \ltimes P_{m}\right) \cup \mathcal{B}_{a_{n} a_{1}}$ is linearly independent. Since each cycle of $\mathcal{B}\left(C_{n} \ltimes P_{m}\right)-\left\{C_{n} \square v_{1}\right\}$ is of length less than n and since $C_{n} \square v_{1}$ is relevant in $C_{n} \ltimes P_{m}$ (Lemma 3.6), $\mathcal{B}\left(C_{n} \ltimes P_{m}\right)$ is linearly independent. Since

$$
\begin{aligned}
\left|\mathcal{B}\left(C_{n} \ltimes P_{m}\right)\right| & =m n-m-n+(n-1) 2\lfloor m / 2\rfloor+1+(m-1)+2\lfloor m / 2\rfloor+1 \\
& =m n-n+2 n\lfloor m / 2\rfloor+1 \\
& =\operatorname{dim} \mathcal{C}\left(C_{n} \ltimes P_{m}\right),
\end{aligned}
$$

$\mathcal{B}\left(C_{n} \ltimes P_{m}\right)$ is a basis of $\mathcal{C}\left(C_{n} \ltimes P_{m}\right)$. It is an easy task to show that $\mathcal{B}\left(C_{n} \ltimes P_{m}\right)$ is a 3 -fold basis. The proof is complete.
Now consider S_{m} to be the star with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $d_{S_{m}}\left(v_{1}\right)=m-1$. Note that the automorphism group of S_{m} is isomorphic to the symmetric group on the set $\left\{v_{2}, v_{3}, \ldots, v_{m}\right\}$. Therefore, for any $\gamma \in \operatorname{Aut}(G), \gamma\left(v_{1}\right)=v_{1}$. Moreover, for any two vertices v_{i}, v_{j} such that $2 \leq$ $i, j \leq m$ there is an automorphism α such that $\alpha\left(v_{i}\right)=v_{j}$. Hence, the graph $a b \ltimes S_{m}$ is decomposable into $\left(a \square S_{m}\right) \cup\left(b \square S_{m}\right) \cup\left\{\left(a, v_{1}\right)\left(b, v_{1}\right)\right\} \cup a b\left[N_{m-1}\right]$ where N_{m-1} is the null graph with the vertex set $\left\{v_{2}, v_{3}, \ldots, v_{m}\right\}$. Let

$$
\mathcal{H}_{a b}=\left\{\left(a, v_{j}\right)\left(b, v_{l}\right)\left(a, v_{j+1}\right)\left(b, v_{l+1}\right)\left(a, v_{j}\right): 2 \leq j, l \leq m\right\} .
$$

Then $\mathcal{H}_{a b}$ is the Schemeichel's 4 -fold basis of $\mathcal{C}\left(a b\left[N_{m-1}\right]\right)$ (see Theorem 2.4 in [21]). Moreover,
(1) if $e=\left(a, v_{2}\right)\left(b, v_{m}\right)$ or $e=\left(a, v_{m}\right)\left(b, v_{2}\right)$ or $e=\left(a, v_{2}\right)\left(b, v_{2}\right)$ or $e=$ $\left(a, v_{m}\right)\left(b, v_{m}\right)$, then $f_{\mathcal{H}_{a b}}(e)=1$.
(2) If $e=\left(a, v_{2}\right)\left(b, v_{l}\right)$ or $\left(a, v_{j}\right)\left(b, v_{2}\right)$ or $\left(a, v_{m}\right)\left(b, v_{l}\right)$ or $\left(a, v_{j}\right)\left(b, v_{m}\right)$, then $f_{\mathcal{H}_{a b}}(e) \leq 2$.
(3) If $e \in E\left(e\left[N_{m-1}\right]\right)$ and is not of the above form, then $f_{\mathcal{H}_{a b}}(e) \leq 4$. Now, define the following sets of cycles (see Figure 2):

$$
\mathcal{G}_{a b}=\left\{\mathcal{G}_{a b}^{(l)}=\left(a, v_{1}\right)\left(a, v_{l}\right)\left(b, v_{2}\right)\left(a, v_{l+1}\right)\left(a, v_{1}\right) \mid 2 \leq l \leq m-1\right\},
$$

and

$$
\mathcal{S}_{a b}=\mathcal{K}_{a b}^{(1)}=\left\{\left(a, v_{1}\right)\left(a, v_{2}\right)\left(b, v_{2}\right)\left(b, v_{1}\right)\left(a, v_{1}\right)\right\} .
$$

Lemma 3.8. $\mathcal{G}_{a b} \cup \mathcal{G}_{b a} \cup \mathcal{S}_{a b}$ is a linearly independent subset of cycles of $\mathcal{C}\left(a b \ltimes S_{m}\right)$.

Proof. $\mathcal{G}_{a b}$ is a basis for the cycle subspace of $\mathcal{C}\left(a b \ltimes S_{m}\right)$ corresponding to the planar subgraph of $a b \ltimes S_{m}$ obtained by pasting all the cycles of $\mathcal{G}_{a b}$, which are 4 -cycles, at the common edges of the successive cycles. Similarly, $\mathcal{G}_{b a}$ is a basis for the cycle subspace of $\mathcal{C}\left(a b \ltimes S_{m}\right)$. Since $E\left(\mathcal{G}_{a b}\right) \cap E\left(\mathcal{G}_{b a}\right)=$ $\left\{\left(a, v_{1}\right)\left(a, v_{2}\right),\left(a, v_{2}\right)\left(b, v_{2}\right),\left(b, v_{2}\right)\left(b, v_{1}\right)\right\}$ which is an edge set of a path and since $\mathcal{S}_{a b}$ contains $\left(b, v_{1}\right)\left(a, v_{1}\right)$ which occurs in no cycle of $\mathcal{G}_{a b} \cup \mathcal{G}_{b a}, \mathcal{G}_{a b} \cup$ $\mathcal{G}_{b a} \cup \mathcal{S}_{a b}$ is a linearly independent set. The proof is complete.

Lemma 3.9. $\mathcal{L}_{a b}=\mathcal{H}_{a b} \cup \mathcal{G}_{a b} \cup \mathcal{G}_{b a} \cup \mathcal{S}_{a b}$ is a linearly independent set of cycles.

Proof. The proof of this lemma follows by noting that every linear combination of cycles of $\mathcal{G}_{a b} \cup \mathcal{G}_{b a} \cup \mathcal{S}_{a b}$ contains at least one edge of the set $E\left(a \square S_{m}\right) \cup E\left(b \square S_{m}\right)$ which occurs in no cycle of $\mathcal{H}_{a b}$. The proof is complete.

Remark 3.3. Let $e \in E\left(P_{n} \ltimes S_{m}\right)$. Then
(1) if $e=\left(a, v_{1}\right)\left(a, v_{l}\right)$ or $\left(b, v_{1}\right)\left(b, v_{l}\right)$, then $f_{\mathcal{L}_{a b}}(e) \leq 2$.
(2) If $e=\left(a, v_{2}\right)\left(b, v_{2}\right)$, then $f_{\mathcal{L}_{a b}}(e)=4$.
(3) If $e=\left(a, v_{m}\right)\left(b, v_{m}\right)$ or $\left(a, v_{1}\right)\left(b, v_{1}\right)$, then $f_{\mathcal{L}_{a b}}(e)=1$.
(4) If $e=\left(a, v_{2}\right)\left(b, v_{l}\right)$ or $\left(a, v_{j}\right)\left(b, v_{2}\right)$ such that $m>j, l \geq 2$, then $f_{\mathcal{L}_{a b}}(e) \leq 4$.
(6) If $e=\left(a, v_{m}\right)\left(b, v_{l}\right)$ or $\left(a, v_{j}\right)\left(b, v_{m}\right)$ such that $j, l \geq 2$, then $f_{\mathcal{L}_{a b}}(e) \leq 2$.
(7) If e is not of the above form, then $f_{\mathcal{L}_{a b}}(e)=f_{\mathcal{H}_{a b}}(e) \leq 4$.

The graph $P_{n} \ltimes S_{m}$ is decomposable into $\left(\cup_{i=1}^{n}\left(a_{i} \square S_{m}\right)\right) \cup P_{n}\left[N_{m-1}\right] \cup$ $\left(P_{n} \square v_{1}\right)$. Thus $\left|E\left(P_{n} \ltimes S_{m}\right)\right|=m^{2}(n-1)-m(n-2)+n-2$. And so $\operatorname{dim} \mathcal{C}\left(P_{n} \ltimes S_{m}\right)=m^{2}(n-1)-2 m(n-1)+n-1$.

Lemma 3.10. If $n \geq 4$ and $\left(m^{2}+1\right)(n-1)-m(5 n-2)+3 \leq 0$, then $m<6$.

Proof. $\left(m^{2}+1\right)(n-1) \leq m(5 n-2)-3$. Hence $\left(m^{2}+1\right)(n-1) \leq$ $5 m(n-1)+3(m-1)$ which implies that $\left(m^{2}+1\right) \leq 5 m+3(m-1) /(n-1)$ and so $m \leq 5+3(m-1) / m(n-1)-1 / m$. But $3(m-1) / m(n-1)-1 / m<1$. Therefore, $m<6$.

Theorem 3.11. For any path P_{n} of order $n \geq 2$ and star S_{m}, we have that $b\left(P_{n} \ltimes S_{m}\right) \leq 4$. Moreover, the equality holds if $n \geq 4$ and $m \geq 6$.

Proof. Defined $\mathcal{B}\left(P_{n} \ltimes S_{m}\right)=\cup_{i=1}^{n-1} \mathcal{L}_{a_{i} a_{i+1}}$. Then by Lemma 3.9 and using the same arguments as in Theorem 3.5 we have that $\mathcal{B}\left(P_{n} \ltimes S_{m}\right)$ is linearly independent. Now,

$$
\left|\mathcal{L}_{a_{i} a_{i+1}}\right|=m^{2}-2 m+1 .
$$

Thus,

$$
\mathcal{B}\left(P_{n} \ltimes S_{m}\right)=\sum_{i=1}^{n-1}\left(m^{2}-2 m+1\right)=\operatorname{dim} \mathcal{C}\left(P_{n} \ltimes S_{m}\right)
$$

Therefore, $\mathcal{B}\left(P_{n} \ltimes S_{m}\right)$ is a basis for $\mathcal{C}\left(P_{n} \ltimes S_{m}\right)$. Now we show that $\mathcal{B}\left(P_{n} \ltimes\right.$ $\left.S_{m}\right)$ is a 4 -fold basis. Let $e \in E\left(P_{n} \ltimes S_{m}\right)$. Then
(1) if $e=\left(a_{i}, v_{1}\right)\left(a_{i}, v_{l}\right)$, then $f_{\mathcal{B}\left(P_{n} \ltimes S_{m}\right)}(e)=f_{\mathcal{L}_{a_{i-1} a_{i}}}(e)+f_{\mathcal{L}_{a_{i} a_{i+1}}}(e) \leq$ $2+2=4$.
(2) If $e=\left(a_{i}, v_{j}\right)\left(a_{i+1}, v_{l}\right)$ such that $j, l \geq 2$, then $f_{\mathcal{B}\left(P_{n} \ltimes S_{m}\right)}(e)=f_{\mathcal{L}_{a_{i} a_{i+1}}}(e)$ ≤ 4.
(3) If $e=\left(a_{i}, v_{1}\right)\left(a_{i+1}, v_{1}\right)$, then $f_{\mathcal{B}\left(P_{n} \ltimes S_{m}\right)}(e)=f_{\mathcal{L}_{a_{i} a_{i+1}}}(e)=1$.

Now, we show that $b\left(P_{n} \ltimes S_{m}\right) \geq 4$ for each $n \geq 4$ and $m \geq 6$. Suppose that \mathcal{B} is a 3 -fold basis of $\mathcal{C}\left(P_{n} \ltimes S_{m}\right)$ for each $n \geq 4$ and $m \geq 6$. Since the girth of $P_{n} \ltimes S_{m}$ is 4 , as a result

$$
4 \operatorname{dim} \mathcal{C}\left(P_{n} \ltimes S_{m}\right) \leq 3\left|E\left(P_{n} \ltimes S_{m}\right)\right|
$$

and so

$$
\begin{aligned}
4\left(n m^{2}-2 m n-m^{2}+2 m+n-1\right) & \leq 3\left(n m^{2}-m n-m^{2}+2 m+n-2\right), \\
n m^{2}-5 m n-m^{2}+2 m+n+2 & \leq 0 \\
m^{2}(n-1)-m(5 n-2)+(n-1)+3 & \leq 0 \\
\left(m^{2}+1\right)(n-1)-m(5 n-2)+3 & \leq 0
\end{aligned}
$$

By Lemma 3.10, for $n \geq 4$, we have that $m<6$. This is a contradiction. The proof is complete.
Now, $C_{n} \ltimes S_{m}$ is decomposable into $P_{n} \ltimes S_{m} \cup a_{1} a_{m}\left[N_{m-1}\right] \cup\left\{\left(a_{1}, v_{1}\right)\left(a_{m}, v_{1}\right)\right\}$ where N_{m-1} is the null graph with the vertex set $\left\{v_{2}, v_{3}, \ldots, v_{m}\right\}$. Thus, $\left|E\left(C_{n} \ltimes S_{m}\right)\right|=\left|E\left(P_{n} \ltimes S_{m}\right)\right|+(m-1)^{2}+1$. Hence, $\operatorname{dim} \mathcal{C}\left(C_{n} \ltimes S_{m}\right)=$ $\operatorname{dim} \mathcal{C}\left(P_{n} \ltimes S_{m}\right)+(m-1)^{2}+1=n(m-1)^{2}+1$. By applying the same arguments as in Lemma 3.6 in $C_{n} \ltimes S_{m}$, we have the following result:

Lemma 3.12. $C_{n} \square v_{i}$ is relevant in $C_{n} \ltimes S_{m}$ for each $i=1,2, \ldots, n$.

Theorem 3.13. For any cycle C_{n} and star S_{m}, we have that $b\left(C_{n} \ltimes S_{m}\right) \leq 4$. Moreover, the equality holds if $n \geq 4$ and $m \geq 5$.

Proof. Define $\mathcal{B}\left(C_{n} \ltimes S_{m}\right)=\mathcal{B}\left(P_{n} \ltimes S_{m}\right) \cup \mathcal{L}_{a_{n} a_{1}} \cup\left\{C_{n} \square v_{1}\right\}$. By using the same arguments as in Theorem 3.7, we show that $\mathcal{B}\left(C_{n} \ltimes S_{m}\right)$ is a 4 -fold basis of $\mathcal{C}\left(C_{n} \ltimes S_{m}\right)$. On the other hand to show that $b\left(C_{n} \ltimes S_{m}\right) \geq 4$, we suppose that \mathcal{B} is a 3 -fold basis of the space $\mathcal{C}\left(C_{n} \ltimes S_{m}\right)$ for each $n \geq 4$ and $m \geq 5$, then we argue more or less as in Theorem 3.12 by taking into account that if $n \geq 4$ and $n m^{2}-5 m n+n+4 \leq 0$, then $m<5$. The proof is complete.

Now, consider W_{m} to be the wheel graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $d_{W_{m}}\left(v_{1}\right)=m-1$. Note that for $m \geq 5, \operatorname{Aut}\left(W_{m}\right)$ is isomorphic to $\operatorname{Aut}\left(S_{m}\right)$. Hence, $a b \ltimes W_{m}$ is decomposable into $a b \ltimes S_{m} \cup(a \square C) \cup(b \square C)$ where $C=v_{2} v_{3} \ldots v_{m} v_{2}$. For each $k=2,3, \ldots, m$, define,

$$
\begin{aligned}
\mathcal{P}_{a b}^{(k)} & =\left\{\mathcal{P}_{a b}^{(k, j)}=\left(b, v_{k}\right)\left(a, v_{j}\right)\left(a, v_{j+1}\right)\left(b, v_{k}\right) \mid 2 \leq j \leq m-1\right\}, \\
\mathcal{Q}_{a} & =\left\{\left(a, v_{2}\right)\left(a, v_{3}\right) \ldots\left(a, v_{m}\right)\left(a, v_{2}\right)\right\} .
\end{aligned}
$$

Analogously, we define \mathcal{Q}_{b} (see Figure 2).

Figure 2. These graphs illustrate the cycles $\mathcal{G}_{a b}^{(l)}, \mathcal{P}_{a b}^{(k, j)}$ and \mathcal{Q}_{a}.
Lemma 3.14. $\left(\cup_{k=2}^{m} \mathcal{P}_{a b}^{(k)}\right) \cup \mathcal{P}_{b a}^{(m)}$ is linearly independent.
Proof. Since $\mathcal{P}_{a b}^{(k, j)}$ contains an edge of the form $\left(a, v_{j}\right)\left(a, v_{j+1}\right)$ which is not in any other cycle of $\mathcal{P}_{a b}^{(k)}$, as a result $\mathcal{P}_{a b}^{(k)}$ is linearly independent for each
$k=2,3, \ldots, m$. Now by the inductive step, we assume that $\cup_{k=2}^{m-1} \mathcal{P}_{a b}^{(k)}$ is linearly independent. Note that $E\left(\cup_{k=2}^{m-1} \mathcal{P}_{a b}^{(k)}\right) \cap E\left(\mathcal{P}_{a b}^{(m)}\right)=E\left(a \square v_{2} v_{3} \ldots v_{m}\right)$ which is an edge set of a path. Thus, $\cup_{k=2}^{m} \mathcal{P}_{a b}^{(k)}$ is linearly independent. Now, each cycle $\mathcal{P}_{b a}^{(m, j)}$ contains an edge of the form $\left(b, v_{j}\right)\left(b, v_{j+1}\right)$ which occurs in no other cycles of $\left(\cup_{k=2}^{m} \mathcal{P}_{a b}^{(k)}\right) \cup \mathcal{P}_{b a}^{(m)}$. Thus, $\left(\cup_{k=2}^{m} \mathcal{P}_{a b}^{(k)}\right) \cup \mathcal{P}_{b a}^{(m)}$ is linearly independent. The proof is complete.

Lemma 3.15. If $n \geq 2$ and $m^{2}(n-1)-4 m(n-1)-2 m+3 n-1 \leq 0$, then $m<6$.

Proof. $m^{2}(n-1) \leq 4 m(n-1)+2 m-3 n+1$. Thus, $m \leq 4+2 /(n-1)$ $-3 n / m(n-1)+1 / m(n-1)$ which implies that $m \leq 4+2-2 / m(n-1)$. Hence, $m<6$.

Lemma 3.16. If $n \geq 2$ and $m^{2}(n-1)-4 m(n-1)-2 m+2 \leq 0$, then $m<6$.

Proof. As in Lemma 3.15 we have that $m \leq 4+2 /(n-1)-2 / m(n-1)$ which implies that $m \leq 4+2-2 / m(n-1)<6$.

Lemma 3.17. If $n \geq 2$ and $m^{2}(n-1)-7 m(n-1)-5 m+3 n+2 \leq 0$, then $m<12$.

Proof. As in Lemma 3.15, we have that $m \leq 7+5 /(n-1)-3 n / m(n-1)$ $-2 / m(n-1)<12$.

Note that $P_{n} \ltimes W_{m}$ is decomposable into $P_{n} \ltimes S_{m} \cup\left(\cup_{i=1}^{n}\left(a_{i} \square C\right)\right)$ where $C=v_{2} v_{3} \ldots v_{m} v_{2}$. Thus, $\left|E\left(P_{n} \ltimes W_{m}\right)\right|=\left|E\left(P_{n} \ltimes S_{m}\right)\right|+(m-1) n$. Hence, $\operatorname{dim} \mathcal{C}\left(P_{n} \ltimes W_{m}\right)=(n-1) m^{2}+2 m-m n-1$.

Theorem 3.18. For each wheel W_{m} of order $m \geq 5$ and path P_{n} of order $n \geq 2$, we have that $b\left(P_{n} \ltimes W_{m}\right) \leq 4$. Moreover, the equality holds if $n \geq 2$ and $m \geq 12$.

Proof. Define $\mathcal{B}\left(P_{n} \ltimes W_{m}\right)=\mathcal{B}\left(P_{n} \ltimes S_{m}\right) \cup\left(\cup_{i=1}^{n-1} \mathcal{P}_{a_{i} a_{i+1}}^{(m)}\right) \cup \mathcal{P}_{a_{n} a_{n-1}}^{(m)} \cup$ $\left(\cup_{i=1}^{n} \mathcal{Q}_{a_{i}}\right)$ where $\mathcal{B}\left(P_{n} \ltimes S_{m}\right)$ is defined as in Theorem 3.11. By Lemma 3.14 each one of $\mathcal{P}_{a_{i} a_{i+1}}^{(m)}$ and $\mathcal{P}_{a_{n} a_{n-1}}^{(m)}$ is linearly independent. Since $E\left(\mathcal{P}_{a_{i} a_{i+1}}^{(m)}\right) \cap$ $E\left(\mathcal{P}_{a_{l} a_{l+1}}^{(m)}\right)=\varnothing$ whenever $i \neq l, \cup_{i=1}^{n-1} \mathcal{P}_{a_{i} a_{i+1}}^{(m)}$ is linearly independent. Now, each linear combination of cycles of $\mathcal{P}_{a_{n} a_{n-1}}^{(m)}$ contains at least one edge of
$E\left(a_{n} \square v_{1} v_{2} \ldots v_{m}\right)$ which is not in any cycle of $\cup_{i=1}^{n-1} \mathcal{P}_{a_{i} a_{i+1}}^{(m)}$. Thus $\left(\cup_{i=1}^{n-1} \mathcal{P}_{a_{i} a_{i+1}}^{(m)}\right) \cup \mathcal{P}_{a_{n} a_{n-1}}^{(m)}$ is linearly independent. $E\left(\mathcal{Q}_{a_{i}}\right) \cap E\left(\mathcal{Q}_{a_{j}}\right)=\varnothing$ whenever $i \neq j$, also $\mathcal{Q}_{a_{i}}$ is the only cycle of $\mathcal{B}\left(P_{n} \ltimes W_{m}\right)$ containing $\left(a_{i}, v_{m}\right)\left(a_{i}, v_{2}\right)$ for each i. Therefore, $\left(\cup_{i=1}^{n-1} \mathcal{P}_{a_{i} a_{i+1}}^{(m)}\right) \cup \mathcal{P}_{a_{n} a_{n-1}}^{(m)} \cup\left(\cup_{i=1}^{n} \mathcal{Q}_{a_{i}}\right)$ is linearly independent. Any linear combination of cycles of $\left(\cup_{i=1}^{n-1} \mathcal{P}_{a_{i} a_{i+1}}^{(m)}\right) \cup \mathcal{P}_{a_{n} a_{n-1}}^{(m)} \cup\left(\cup_{i=1}^{n} \mathcal{Q}_{a_{i}}\right)$ contains at least one edge of the set $\cup_{i=1}^{n} E\left(a_{i} \square v_{2} v_{3}, \ldots, v_{m} v_{2}\right)$ which is not in any cycle of $\mathcal{B}\left(P_{n} \ltimes S_{m}\right)$. Thus, $\mathcal{B}\left(P_{n} \ltimes W_{m}\right)$ is linearly independent. Since

$$
\begin{aligned}
\left|\mathcal{B}\left(P_{n} \ltimes W_{m}\right)\right|= & \left|\mathcal{B}\left(P_{n} \ltimes S_{m}\right)\right|+\sum_{i=1}^{n-1}\left|\mathcal{P}_{a_{i} a_{i+1}}^{(m)}\right|+\left|\mathcal{P}_{a_{n} a_{n-1}}^{(m)}\right|+\sum_{i=1}^{n}\left|\mathcal{Q}_{a_{i}}\right| \\
= & m^{2} n-2 m n-m^{2}+2 m+(n-1)+(n-1)(m-2) \\
& +(m-2)+n \\
= & (n-1) m^{2}+2 m-m n-1 \\
= & \operatorname{dim} \mathcal{C}\left(P_{m} \ltimes W_{n}\right),
\end{aligned}
$$

$\mathcal{B}\left(P_{m} \ltimes W_{n}\right)$ is a basis for $\mathcal{C}\left(P_{m} \ltimes W_{n}\right)$. Now we show that $\mathcal{B}\left(P_{m} \ltimes W_{n}\right)$ is a 4-fold basis. Let $e \in E\left(P_{n} \ltimes W_{m}\right)$. Then
(1) if $e=\left(a_{i}, v_{1}\right)\left(a_{i}, v_{l}\right)$, then $f_{\mathcal{B}\left(P_{n} \ltimes W_{m}\right)}(e)=f_{\mathcal{L}_{a_{i-1} a_{i}}}(e)+f_{\mathcal{L}_{a_{i} a_{i+1}}}(e) \leq$ $2+2=4$.
(2) If $e=\left(a_{i}, v_{j}\right)\left(a_{i+1}, v_{l}\right)$ such that $m>j, l \geq 2$, then $f_{\mathcal{B}\left(P_{n} \ltimes W_{m}\right)}(e)=$ $f_{\mathcal{L}_{a_{i} a_{i+1}}}(e) \leq 4$.
(3) If $e=\left(a_{i}, v_{m}\right)\left(a_{i+1}, v_{l}\right)$ or $\left(a_{i}, v_{l}\right)\left(a_{i+1}, v_{m}\right)$ such that $m>l \geq 2$, then $f_{\mathcal{B}\left(P_{n} \ltimes W_{m}\right)}(e)=f_{\mathcal{L}_{a_{i} a_{i+1}}}+f_{\mathcal{P}_{a_{i} a_{i+1}}^{(m)} \cup \mathcal{P}_{a_{n} a_{n-1}}^{(m)}}(e) \leq 2+2=4$.
(4) If $e=\left(a_{i}, v_{1}\right)\left(a_{i+1}, v_{1}\right)$, then $f_{\mathcal{B}\left(P_{n} \ltimes W_{m}\right)}(e)=f_{\mathcal{S}_{a_{i} a_{i+1}}}(e)=1$.
(5) If $e=\left(a_{i}, v_{2}\right)\left(a_{i}, v_{m}\right)$, then $f_{\mathcal{B}\left(P_{n} \ltimes W_{m}\right)}(e)=f_{\mathcal{Q}_{a_{i}}}(e)=1$.
(6) If $e=\left(a_{i}, v_{m}\right)\left(a_{i+1}, v_{m}\right)$, then $f_{\mathcal{B}\left(P_{n} \ltimes W_{m}\right)}(e)=f_{\mathcal{H}_{a_{i} a_{i+1}}}(e)+f_{\mathcal{P}_{a_{i} a_{i+1}}^{(m)}}(e)+$ $f_{\mathcal{P}_{a_{n} a_{n-1}}^{(m)}}(e) \leq 1+1+1=3$.
(7) If $e=\left(a_{i}, v_{j}\right)\left(a_{i}, v_{j+1}\right)$ such that $j \geq 2$ and $i \leq n-1$, then $f_{\mathcal{B}\left(P_{n} \ltimes W_{m}\right)}(e)=f_{\mathcal{P}_{a_{i} a_{i+1}}^{(m)}}(e)+f_{\mathcal{Q}_{a_{i}}}(e) \leq 1+1=2$.
(8) If $e=\left(a_{n}, v_{j}\right)\left(a_{n}, v_{j+1}\right)$ such that $j \geq 2$, then $f_{\mathcal{B}\left(P_{n} \ltimes W_{m}\right)}(e)=$ $f_{\mathcal{P}_{a_{n} a_{n-1}}^{(m)}}(e)+f_{\mathcal{Q}_{a_{n}}}(e) \leq 1+1=2$.
(9) If $e=\left(a_{i}, v_{2}\right)\left(a_{i+1}, v_{m}\right)$ or $\left(a_{i}, v_{m}\right)\left(a_{i+1}, v_{2}\right)$, then $f_{\mathcal{B}\left(P_{n} \ltimes W_{m}\right)}(e)=$ $f_{\mathcal{L}_{a_{n} a_{n-1}}}(e)+f_{\mathcal{P}_{a_{i} a_{i+1}} \cup \mathcal{P}_{a_{n} a_{n-1}}^{(m)}}(e) \leq 2+1=2$.

On the other hand, to show that $b\left(P_{n} \ltimes W_{m}\right) \geq 4$ for any $n \geq 2$ and $m \geq 12$, we have to exclude any possibility for the cycle space $\mathcal{C}\left(P_{n} \ltimes\right.$ $\left.W_{m}\right)$ to have a 3 -fold basis for any $n \geq 2$ and $m \geq 12$. To this end, suppose that \mathcal{B} is a 3 -fold basis of the cycle space $\mathcal{C}\left(P_{n} \ltimes W_{m}\right)$ for any $n \geq 2$ and $m \geq 12$. First, suppose that \mathcal{B} consists only of 3 -cycles. Then $|\mathcal{B}| \leq$ $3(m-1) n$ because any 3 -cycle must contain an edge of $E\left(a_{i} \square\left(v_{2} v_{3} \ldots v_{m} v_{2}\right)\right)$, for $i=1,2, \ldots, n$ and each edge is of fold at most 3 . This is equivalent to the inequality $m^{2}(n-1)-m n+2 m-1 \leq 3(m-1) n$ which implies that $m^{2}(n-1)-4 m(n-1)-2 m+3 n-1 \leq 0$ and so by Lemma $3.15, m<6$. This is a contradiction. Now, suppose that \mathcal{B} consists only of cycles of length greater than or equal to 4 . Then $4|\mathcal{B}| \leq 3\left|E\left(P_{n} \ltimes W_{m}\right)\right|$ because the length of each cycle of \mathcal{B} greater than or equal to 4 and each edge is of fold at most 3. Thus, $4\left(m^{2}(n-1)-m n+2 m-1\right) \leq 3\left(m^{2}(n-1)+2 m-2\right)$ which is equivalent to $m^{2}(n-1)-4 m(n-1)-2 m+2 \leq 0$ and so by Lemma 3.16, $m<6$. This is a contradiction. Finally, Suppose that \mathcal{B} consists of $r 3$-cycles and f cycles of length greater than or equal to 4 . Then $f \leq\left\lfloor\left(3\left(m^{2}(n-1)+2 m-2\right)-3 r\right) / 4\right\rfloor$ because the length of each cycle of r is 3 and each cycle of f is at least 4 and the fold of each edge is at most 3. Hence, $|\mathcal{B}|=r+f \leq r+\left\lfloor\left(3\left(m^{2}(n-1)+2 m-2\right)-3 r\right) / 4\right\rfloor$ which implies that $4\left(m^{2}(n-1)-m n+2 m-1\right) \leq r+3\left(m^{2}(n-1)+2 m-2\right)$. Thus, $4\left(m^{2}(n-1)-m n+2 m-1\right) \leq 3(m-1) n+3\left(m^{2}(n-1)+2 m-2\right)$. By simplifying the inequality we have that $m^{2}(n-1)-7 m(n-1)-5 m+3 n+2$ ≤ 0. Thus, by Lemma $3.17 m<12$. This is a contradiction. The proof is complete.

Now, $C_{n} \ltimes W_{m}$ is decomposable into $P_{n} \ltimes W_{m} \cup a_{1} a_{m}\left[N_{m-1}\right] \cup\left\{\left(a_{1}, v_{1}\right)\right.$ $\left.\left(a_{m}, v_{1}\right)\right\}$ where N_{m-1} is the null graph with the vertex set $\left\{v_{2}, v_{3}, \ldots, v_{m}\right\}$. Thus, $\left|E\left(C_{n} \ltimes W_{m}\right)\right|=\left|E\left(P_{n} \ltimes W_{m}\right)\right|+(m-1)^{2}+1$. Hence, $\operatorname{dim} \mathcal{C}\left(C_{n} \ltimes W_{m}\right)=$ $\operatorname{dim} \mathcal{C}\left(P_{n} \ltimes W_{m}\right)+(m-1)^{2}+1=n m^{2}-m n+1$. By employing the same ideas as in Lemma 3.6, we have the following result.

Lemma 3.19. $C_{n} \square v_{i}$ is relevant in $C_{n} \ltimes W_{m}$.
Theorem 3.20. For each cycle C_{n} of order n and wheel W_{m} of order $m \geq 5$, we have that $b\left(C_{n} \ltimes W_{m}\right) \leq 4$. Moreover, the equality holds if and only if $n \geq 3$ and $m \geq 7$.

Proof. Define $\mathcal{B}\left(C_{n} \ltimes W_{m}\right)=\mathcal{B}\left(P_{n} \ltimes W_{m}\right) \cup \mathcal{L}_{a_{n} a_{1}} \cup\left\{C_{n} \square v_{1}\right\}$. By noting that $E\left(\mathcal{L}_{a_{n} a_{1}}\right) \cap E\left(\mathcal{B}\left(P_{n} \ltimes W_{m}\right)\right)=\left(a_{1} \square S_{m}\right) \cup\left(a_{n} \square S_{m}\right)$ which is an edge set of a forest, we have that $\mathcal{B}\left(P_{n} \ltimes W_{m}\right)-\left\{C_{n} \square v_{1}\right\}$ is linearly independent. By Lemma 3.18, $\mathcal{B}\left(P_{n} \ltimes W_{m}\right)$ is linearly independent. Since

$$
\begin{aligned}
\left|\mathcal{B}\left(C_{n} \ltimes W_{m}\right)\right| & =\left|\mathcal{B}\left(P_{n} \ltimes W_{m}\right)\right|+\left|\mathcal{L}_{a_{n} a_{1}}\right|+1 \\
& =n m^{2}-m n+1 \\
& =\operatorname{dim} \mathcal{C}\left(C_{m} \ltimes W_{n}\right),
\end{aligned}
$$

$\mathcal{B}\left(C_{m} \ltimes W_{n}\right)$ is a basis for $\mathcal{C}\left(C_{m} \ltimes W_{n}\right)$. Now we can easily show that $\mathcal{B}\left(C_{m} \ltimes W_{n}\right)$ is a 4 -fold basis. To show that $\mathcal{C}\left(C_{m} \ltimes W_{n}\right)$ has no 3 -fold basis we argue more or less as in the last paragraph of Theorem 3.18. The proof is complete.

4. The Minimum Cycle Bases of the Wreath Product of Graphs

In this section, we present minimum cycle bases (MCBs) for the wreath product of two paths, a cycle with a path, a path with a star, a cycle with a star, a path with a wheel and a cycle with a wheel. Moreover, we give the length of their maximum cycle.

Theorem 4.1. $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)$ is a minimum cycle basis of $P_{n} \ltimes P_{m}$.
Proof. Recall that a MCB is obtained by a greedy algorithm, that is, an algorithm that selects independent cycles starting with the shortest ones from the set of all cycles. We consider two cases:

Case 1. m is odd. Then the girth of $P_{n} \ltimes P_{m}$ is 4 . Since each cycle of $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)$ is of length 4 , as a result $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)$ is a MCB.

Case 2. m is even. Note that the only 3 -cycles of $P_{n} \ltimes P_{m}$ are $\cup_{i=1}^{n-1} \mathcal{Z}_{a_{i} a_{i+1}}$ and only three cycles of the four cycles of $\mathcal{Z}_{a_{i} a_{i+1}}$ are linearly independent for each $i=1,2, \ldots, n-1$. Thus, $\left\{\mathcal{Z}_{a_{i} a_{i+1}}^{(1)}, \mathcal{Z}_{a_{i} a_{i+1}}^{(2)}, \mathcal{Z}_{a_{i} a_{i+1}}^{(3)} \mid i=1,2, \ldots n-1\right\}$ is a set consisting of the largest number of 3 -cycles linearly independent of $\mathcal{C}\left(P_{n} \ltimes P_{m}\right)$. Since $\left\{\mathcal{Z}_{a_{i} a_{i+1}}^{(1)}, \mathcal{Z}_{a_{i} a_{i+1}}^{(2)}, \mathcal{Z}_{a_{i} a_{i+1}}^{(3)} \mid i=1,2, \ldots n-1\right\} \subseteq \mathcal{B}\left(P_{n} \ltimes P_{m}\right)$ and $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)-\left\{\mathcal{Z}_{a_{i} a_{i+1}}^{(1)}, \mathcal{Z}_{a_{i} a_{i+1}}^{(2)}, \mathcal{Z}_{a_{i} a_{i+1}}^{(3)} \mid i=1,2, \ldots n-1\right\}$ are 4 -cycles, $\mathcal{B}\left(P_{n} \ltimes P_{m}\right)$ is MCB. The proof is complete.

Corollary 4.2 .

$l\left(P_{n} \ltimes P_{m}\right)= \begin{cases}4(m n-m-n+2(n-1)\lfloor m / 2\rfloor+1), & \text { if } n \text { is odd, } \\ 4 m n-4 m-7 n+8(n-1)\lfloor m / 2\rfloor+7, & \text { if } n \text { is even } .\end{cases}$
$\lambda\left(P_{n} \ltimes P_{m}\right)=4$.
Theorem 4.3. For each $n \geq 4, \mathcal{B}\left(C_{n} \ltimes P_{m}\right)$ is a minimum cycle basis of $C_{n} \ltimes P_{m}$.

Proof. By Lemma 3.6 and following, word by word, the same arguments as in the proof of Theorem 4.1 by taking into account that in Case 2 the set $\left\{\mathcal{Z}_{a_{i} a_{i+1}}^{(1)}, \mathcal{Z}_{a_{i} a_{i+1}}^{(2)}, \mathcal{Z}_{a_{i} a_{i+1}}^{(3)} \mid i=1,2, \ldots n-1\right\} \cup\left\{\mathcal{Z}_{a_{n} a_{1}}^{(1)}, \mathcal{Z}_{a_{n} a_{1}}^{(2)}, \mathcal{Z}_{a_{n} a_{1}}^{(3)}\right\}$ is consisting of the largest number of 3 -cycles linearly independent of $\mathcal{C}\left(C_{n} \ltimes\right.$ P_{m}), we have the result. The proof is complete.

Corollary 4.4.

For $n \geq 4, l\left(C_{n} \ltimes P_{m}\right)= \begin{cases}4 m n-3 n+8 n\lfloor m / 2\rfloor, & \text { if } n \text { is odd, } \\ 4 m n-6 n+8 n\lfloor m / 2\rfloor, & \text { if } n \text { is even. }\end{cases}$ and $\lambda\left(C_{n} \times P_{m}\right)=n$.

By noting that each of $P_{n} \ltimes S_{m}$ and $C_{r} \ltimes S_{m}$ has no 3 -cycle for each $r \geq 4$ and by Theorems 3.11 and 3.13 and Lemma 3.12, we have the following result.

Theorem 4.5. For each $r \geq 4, \mathcal{B}\left(P_{n} \ltimes S_{m}\right)$ and $\mathcal{B}\left(C_{r} \ltimes S_{m}\right)$ are minimum cycle bases.

Corollary 4.6. For each $r \geq 4, l\left(P_{n} \ltimes S_{m}\right)=4\left(m^{2} n-2 m n-m^{2}+2 m+n-1\right)$, $l\left(C_{r} \ltimes S_{m}\right)=4\left(m^{2} r-2 m r+r+1\right), \lambda\left(P_{n} \ltimes P_{m}\right)=4$ and $\lambda\left(C_{r} \ltimes S_{m}\right)=r$.

The proof of the following result is a straightforward.
Lemma 4.7. Let H be a subgraph of the graph G. Let A and B be a cycle basis and a minimum cycle basis of H and G, respectively. If $A \subseteq B$, then A is a minimum cycle basis of H.

In the following result $\mathcal{B}_{a_{i} \square W_{m}}$ denotes to the cycle basis of the wheel $a_{i} \square W_{m}$ consisting of 3 -cycles.

Theorem 4.8. $\mathcal{B}^{*}\left(P_{n} \ltimes W_{m}\right)=\left(\cup_{i=1}^{n-1} \cup_{j=2}^{m} \mathcal{P}_{a_{i} a_{i+1}}^{(j)}\right) \cup\left(\cup_{i=1}^{n-1} \mathcal{P}_{a_{i+1} a_{i}}^{(m)}\right) \cup$ $\left(\cup_{i=1}^{n} \mathcal{B}_{a_{i} \square W_{m}}\right) \cup\left(\cup_{i=1}^{n-1} \mathcal{S}_{a_{i} a_{i+1}}\right)$ and $\mathcal{B}^{*}\left(C_{n} \ltimes W m\right)=\mathcal{B}^{*}\left(P_{n} \ltimes W_{m}\right) \cup$
$\left(\cup_{j=2}^{m} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup \mathcal{P}_{a_{1} a_{n}}^{(m)} \cup \mathcal{S}_{a_{n} a_{1}} \cup\left\{C_{n} \times v_{1}\right\}$ are minimum bases of $P_{n} \ltimes W_{m}$ and $C_{n} \ltimes W_{m}$, respectively.

Proof. By Lemma 4.7, it is enough to show that $\mathcal{B}^{*}\left(C_{n} \ltimes W m\right)$ is a minimum cycle basis of $C_{n} \ltimes W_{m}$ and $\mathcal{B}^{*}\left(P_{n} \ltimes W_{m}\right)$ is a cycle basis of $P_{n} \ltimes W_{m}$. By Lemma 3.14, each one of the two sets $\left(\cup_{j=2}^{m} \mathcal{P}_{a_{i} a_{i+1}}^{(j)}\right) \cup \mathcal{P}_{a_{i+1} a_{i}}^{(m)}$ and $\left(\cup_{j=2}^{m} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup \mathcal{P}_{a_{1} a_{n}}^{(m)}$ is linearly independent. Note that

$$
\begin{gathered}
E\left(\left(\cup_{j=2}^{m} \mathcal{P}_{a_{k} a_{k+1}}^{(j)}\right) \cup \mathcal{P}_{a_{k+1} a_{k}}^{(m)}\right) \cap E\left(\cup_{i=1}^{k-1}\left(\left(\cup_{j=2}^{m} \mathcal{P}_{a_{i} a_{i+1}}^{(j)}\right) \cup \mathcal{P}_{a_{i+1} a_{i}}^{(m)}\right)\right) \\
=E\left(a_{k} \square v_{2} v_{3} \ldots v_{m}\right)
\end{gathered}
$$

which is an edge set of path for each $k=1,2, \ldots, n-1$ and

$$
\begin{gathered}
E\left(\left(\cup_{j=2}^{m} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup \mathcal{P}_{a_{1} a_{n}}^{(m)}\right) \cap E\left(\cup_{i=1}^{n-1}\left(\left(\cup_{j=2}^{m} \mathcal{P}_{a_{i} a_{i+1}}^{(j)}\right) \cup \mathcal{P}_{a_{i+1} a_{i}}^{(m)}\right)\right) \\
=E\left(a_{1} \square v_{2} v_{3} \ldots v_{m}\right) \cup E\left(a_{n} \square v_{2} v_{3} \ldots v_{m}\right)
\end{gathered}
$$

which is an edge set of a forest. Thus, $\left(\cup_{i=1}^{n-1} \cup_{j=2}^{m} \mathcal{P}_{a_{i} a_{i+1}}^{(j)}\right) \cup\left(\cup_{i=1}^{n-1} \mathcal{P}_{a_{i+1} a_{i}}^{(m)}\right) \cup$ $\left(\cup_{j=2}^{m} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup \mathcal{P}_{a_{1} a_{n}}^{(m)}$ is linearly independent set. Now, for each $i=1,2, \ldots, n$, $\mathcal{B}_{a_{i} \times W_{m}}$ is a cycle basis of $a_{i} \square W_{m}$. Since $E\left(\mathcal{B}_{a_{i} \square W_{m}}\right) \cap E\left(\mathcal{B}_{a_{j} \square W_{m}}\right)=\phi$ whenever $i \neq j, \cup_{i=1}^{n} \mathcal{B}_{a_{i} \square W_{m}}$ is linearly independent. Now any linear combination of $\cup_{i=1}^{n} \mathcal{B}_{a_{i} \square W_{m}}$ contains an edge of $\cup_{i=1}^{n} E\left(a_{i} \square(W-S)\right)$ which is not in any cycle of $\left(\cup_{i=1}^{n-1} \cup_{j=2}^{m} \mathcal{P}_{a_{i} a_{i+1}}^{(j)}\right) \cup\left(\cup_{i=1}^{n-1} \mathcal{P}_{a_{i+1} a_{i}}^{(m)}\right) \cup\left(\cup_{j=2}^{m} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup \mathcal{P}_{a_{1} a_{n}}^{(m)}$ where S is the star graph which is obtained from W_{m} by deleting the edges of the cycle $v_{2} v_{3} \ldots v_{m} v_{2}$, as a result $\left(\cup_{j=1}^{n} \cup_{i=1}^{m-1} \mathcal{P}_{a_{i} a_{i+1}}^{(j)}\right) \cup\left(\cup_{i=1}^{m-1} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup\left(\cup_{j=2}^{m} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup$ $\mathcal{P}_{a_{1} a_{n}}^{(m)} \cup\left(\cup_{i=1}^{n} \mathcal{B}_{a_{i} \square W_{m}}\right)$ is linearly independent. Now, $\left(\cup_{i=1}^{n-1} \mathcal{S}_{a_{i} a_{i+1}}\right) \cup \mathcal{S}_{a_{n} a_{1}}$ is a cycle basis of the planar graph $P_{n} \square v_{1} v_{2}$ which obtained by pasting all the cycle of $\left(\cup_{i=1}^{n-1} \mathcal{S}_{a_{i} a_{i+1}}\right) \cup \mathcal{S}_{a_{n} a_{1}}$, which are 4 -cycles, at the common edges of the successive cycles. Note that any linear combinations of cycles of $\left(\cup_{i=1}^{n-1} \mathcal{S}_{a_{i} a_{i+1}}\right) \cup \mathcal{S}_{a_{n} a_{1}}$ contains an edge of $E\left(P_{n} \square v_{1}\right)$ which is not in any cycle of $\left(\cup_{j=1}^{n} \cup_{i=1}^{m-1} \mathcal{P}_{a_{i} a_{i+1}}^{(j)}\right) \cup\left(\cup_{i=1}^{m-1} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup\left(\cup_{j=2}^{m} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup \mathcal{P}_{a_{1} a_{n}}^{(m)} \cup\left(\cup_{i=1}^{n} \mathcal{B}_{a_{i} \square W}\right)$, thus $\left(\cup_{j=1}^{n} \cup_{i=1}^{m-1} \mathcal{P}_{a_{i} a_{i+1}}^{(j)}\right) \cup\left(\cup_{i=1}^{m-1} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup\left(\cup_{j=2}^{m} \mathcal{P}_{a_{n} a_{1}}^{(j)}\right) \cup \mathcal{P}_{a_{1} a_{n}}^{(m)} \cup\left(\cup_{i=1}^{n} \mathcal{B}_{a_{i} \square W}\right) \cup$ $\left(\cup_{i=1}^{n-1} \mathcal{S}_{a_{i} a_{i+1}}\right) \cup \mathcal{S}_{a_{n} a_{1}}$ is linearly independent. Now By Lemma 3.19, $C_{n} \square v_{1}$ is relevant. Thus, $\mathcal{B}^{*}\left(C_{m} \ltimes W_{n}\right)$ is a linearly independent. Since

$$
\begin{aligned}
\left|\mathcal{B}^{*}\left(C_{n} \ltimes W_{m}\right)\right|= & (m-1)(m-2)(n-1)+(n-1)(m-2)+(m-1) n \\
& +(n-1)+(m-2)(m-1)+(m-2)+1+1 \\
= & m^{2} n-m n+1=\operatorname{dim} \mathcal{C}\left(C_{m} \ltimes W_{n}\right)
\end{aligned}
$$

$\mathcal{B}^{*}\left(C_{n} \ltimes W_{m}\right)$ is a cycle basis of $C_{n} \ltimes W_{m}$. Since each cycle of $\mathcal{B}^{*}\left(C_{m} \ltimes\right.$ $\left.W_{n}\right)-\left\{\left(\cup_{i=1}^{n-1} \mathcal{S}_{a_{i} a_{i+1}}\right) \cup \mathcal{S}_{a_{n} a_{1}} \cup\left(C_{n} \square v_{1}\right)\right\}$ is of length three and since the smallest cycle contains any edge of $\left(a_{i}, v_{1}\right)\left(a_{i+1}, v_{1}\right),\left(a_{1}, v_{1}\right)\left(a_{n}, v_{1}\right)$ is of length 4 and by Lemma 3.19, we have that each cycle of $\mathcal{B}^{*}\left(C_{n} \ltimes W_{m}\right)$ is relevant in $C_{n} \ltimes W_{m}$. Therefore, $\mathcal{B}^{*}\left(C_{m} \ltimes W_{n}\right)$ is a minimum cycle basis $C_{m} \ltimes W_{n}$. Since $\mathcal{B}^{*}\left(P_{m} \ltimes W_{n}\right) \subset \mathcal{B}^{*}\left(C_{m} \ltimes W_{n}\right)$ and $\left|\mathcal{B}^{*}\left(P_{m} \ltimes W_{n}\right)\right|=$ $m^{2} n-m n-m^{2}+2 m-1=\operatorname{dim} \mathcal{C}\left(P_{m} \ltimes W_{n}\right)$, we have that $\mathcal{B}^{*}\left(P_{m} \ltimes W_{n}\right)$ is a cycle basis of $P_{m} \ltimes W_{n}$. The proof is complete.

Corollary 4.9. $l\left(P_{n} \ltimes W_{m}\right)=3 m^{2} n-3 m n-3 m^{2}+6 m-3, l\left(C_{n} \ltimes W_{m}\right)=$ $3 m^{2} n-3 m n+n, \lambda\left(P_{n} \ltimes W_{m}\right)=4$ and $\lambda\left(C_{n} \ltimes W_{m}\right)=n$.

References

[1] M. Anderson and M. Lipman, The wreath product of graphs, in: Graphs and Applications (Boulder, Colo., 1982), (Wiley-Intersci. Publ., Wiley, New York, 1985) 23-39.
[2] A.A. Ali, The basis number of complete multipartite graphs, Ars Combin. 28 (1989) 41-49.
[3] A.A. Ali, The basis number of the direct product of paths and cycles, Ars Combin. 27 (1989) 155-163.
[4] A.A. Ali and G.T. Marougi, The basis number of cartesian product of some graphs, J. Indian Math. Soc. 58 (1992) 123-134.
[5] A.S. Alsardary and J. Wojciechowski, The basis number of the powers of the complete graph, Discrete Math. 188 (1998) 13-25.
[6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (America Elsevier Publishing Co. Inc., New York, 1976).
[7] W.-K. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math. 20 (1971) 525-529.
[8] D.M. Chickering, D. Geiger and D. HecKerman, On finding a cycle basis with a shortest maximal cycle, Inform. Process. Lett. 54 (1994) 55-58.
[9] L.O. Chua and L. Chen, On optimally sparse cycles and coboundary basis for a linear graph, IEEE Trans. Circuit Theory 20 (1973) 54-76.
[10] G.M. Downs, V.J. Gillet, J.D. Holliday and M.F. Lynch, Review of ring perception algorithms for chemical graphs, J. Chem. Inf. Comput. Sci. 29 (1989) 172-187.
[11] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).
[12] W. Imrich and P. Stadler, Minimum cycle bases of product graphs, Australas. J. Combin. 26 (2002) 233-244.
[13] M.M.M. Jaradat, On the basis number of the direct product of graphs, Australas. J. Combin. 27 (2003) 293-306.
[14] M.M.M. Jaradat, The basis number of the direct product of a theta graph and a path, Ars Combin. 75 (2005) 105-111.
[15] M.M.M. Jaradat, An upper bound of the basis number of the strong product of graphs, Discuss. Math. Graph Theory 25 (2005) 391-406.
[16] M.M.M. Jaradat, M.Y. Alzoubi and E.A. Rawashdeh, The basis number of the Lexicographic product of different ladders, SUT J. Math. 40 (2004) 91-101.
[17] A. Kaveh, Structural Mechanics, Graph and Matrix Methods. Research Studies Press (Exeter, UK, 1992).
[18] G. Liu, On connectivities of tree graphs, J. Graph Theory 12 (1988) 435-459.
[19] S. MacLane, A combinatorial condition for planar graphs, Fundamenta Math. 28 (1937) 22-32.
[20] M. Plotkin, Mathematical basis of ring-finding algorithms in CIDS, J. Chem. Doc. 11 (1971) 60-63.
[21] E.F. Schmeichel, The basis number of a graph, J. Combin. Theory (B) $\mathbf{3 0}$ (1981) 123-129.
[22] P. Vismara, Union of all the minimum cycle bases of a graph, Electr. J. Combin. 4 (1997) 73-87.
[23] D.J.A. Welsh, Kruskal's theorem for matroids, Proc. Cambridge Phil, Soc. 64 (1968) 3-4.

