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1. Introduction

The basis number of a graph is one of the numbers which give rise to a better
understanding and interpretations of a geometric properties of a graph (see
[19]). Minimum cycle bases (MCBs) of a cycle spaces have a variety of
applications in sciences and engineering, for example, in structural flexibility
analysis, electrical networks, and in chemical structure storage and retrieval
systems (see [9, 10] and [17]).

In general, required cycle bases, and minimum cycle bases are not very
well behaved under graph operations. Neither the basis number b(G) of
a graph G is monotonic (see [3] and [21]), nor the total length l(G) and
the length of the longest cycle in a minimum cycle basis λ(G) are minor
monotone (see [12]). Hence, there does not seem to be a general way of
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extending required cycle bases and minimum cycle bases of a certain col-
lection of partial graphs of G to a required cycle basis and to a minimum
cycle basis of G, respectively. Global upper bounds b(G) ≤ 2γ(G) + 2 and
l(G) ≤ dim C(G)+κ(T (G)) where γ(G) is the genus of G and κ(T (G)) is the
connectivity of the tree graph of G are proven in [21] and [18], respectively.

In this paper, we investigate the basis number for some classes of graphs
and we construct minimum cycle bases for same, also, we give their total
lengths and the length of longest cycles.

2. Definitions and Preliminaries

The graphs considered in this paper are finite, undirected, simple and con-
nected. Most of the notations that follow can be found in [6]. For a given
graph G, we denote the vertex set of G by V (G) and the edge set by E(G).

2..1 Cycle bases

Given a graph G, let e1, e2, . . . , e|E(G)| be an ordering of its edges. Then
a subset S of E(G) corresponds to a (0, 1)-vector (b1, b2, . . . , b|E(G)|) in the
usual way with bi = 1 if ei ∈ S, and bi = 0 if ei /∈ S. These vectors form
an |E(G)|-dimensional vector space, denoted by (Z2)|E(G)|, over the field
of integers modulo 2. The vectors in (Z2)|E(G)| which correspond to the
cycles in G generate a subspace called the cycle space of G and denoted
by C(G). We shall say that the cycles themselves, rather than the vectors
corresponding to them, generate C(G). It is known that for a connected
graph G dim C(G) = |E(G)| − |V (G)|+ 1 (see [7]).

A basis B for C(G) is called a cycle basis of G. A cycle basis B of G is
called a d-fold if each edge of G occurs in at most d of the cycles in B. The
basis number, b(G), of G is the least non-negative integer d such that C(G)
has a d-fold basis. The length, |C|, of the element C of the cycle space C(G)
is the number of its edges. The length l(B) of a cycle basis B is the sum
of the lengths of its elements: l(B) =

∑
C∈B |C|. λ(G) is defined to be the

minimum length of the longest element in an arbitrary cycle basis of G. A
minimum cycle basis (MCB) is a cycle basis with minimum length. Since
the cycle space C(G) is a matroid in which an element C has weight |C|, the
greedy algorithm can be used to extract a MCB (see [23]). The following
results will be used frequently in the sequel.

Theorem 1.1.1 (MacLane). The Graph G is planar if and only if b(G) ≤ 2.
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A cycle is relevant if it is contained in some MCB (see [22]).

Proposition 1.1.2 (Plotkin). A cycle C is relevant if and only if it cannot
be written as a linear combinations modulo 2 of shorter cycles.

Chickering, Geiger and Heckerman [8], showed that λ(G) is the length of
the longest element in a MCB.

2..2 Products

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs.
(1) The cartesian product G¤H has the vertex set V (G¤H) = V (G)×

V (H) and the edge set E(G¤H) = {(u1, v1)(u2, v2)|u1u2 ∈ E(G) and v1 =
v2, or v1v2 ∈ E(H) and u1 = u2}.

(2) The direct product G×H is the graph with the vertex set V (G×H) =
V (G) × V (H) and the edge set E(G ×H) = {(u1, u2)(v1, v2)|u1v1 ∈ E(G)
and u2v2 ∈ E(H)}.

(3) The strong product G£H is the graph with the vertex set V (G£H) =
V (G) × V (H) and the edge set E(G £ H) = {(u1, u2)(v1, v2)|u1v1 ∈ E(G)
and u2v2 ∈ E(H) or u1 = v1 and u2v2 ∈ E(H) or u1v1 ∈ E(G) and u2 = v2}.

(4) The semi-strong product G1 • G2 is the graph with the vertex set
V (G•H) = V (G)×V (H) and the edge set E(G•H) = {(u1, u2)(v1, v2)|u1v1 ∈
E(G) and u2v2 ∈ E(H) or u1 = v1 and u2v2 ∈ E(H)}.

(5) The lexicographic product G1[G2] is the graph with vertex set
V (G[H]) = V (G)×V (H) and the edge set E(G[H]) = {(u1, u2)(v1, v2)|u1 =
v1 and u2v2 ∈ E(H) or u1v1 ∈ E(G)}.

(6) The wreath product GnH has the vertex set V (GnH) = V (G)×
V (H) and the edge set E(GnH) = {(u1, v1)(u2, v2)|u1 = u2 and v1v2 ∈ H,
or u1u2 ∈ G and there is α ∈Aut(H) such that α(v1) = v2} (see [1] and [11]).

Many authors studied the basis number and the minimum cycle bases
of graph products. The cartesian product of any two graphs was studied by
Ali and Marougi [4] and Imrich and Stadler [12].

Theorem 1.2.1 (Ali and Marougi). If G and H are two connected disjoint
graphs, then b(G¤H) ≤ max{b(G) +4(TH), b(H) +4(TG)} where TH and
TG are spanning trees of H and G, respectively, such that the maximum
degrees 4(TH) and ∆(TG) are minimum with respect to all spanning trees
of H and G.
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Theorem 1.2.2 (Imrich and Stadler). If G and H are triangle free, then
l(G¤H) = l(G) + l(H) + 4[|E(G)|(|V (H)| − 1) + |E(H)|(|V (G)| − 1) −
(|V (H)| − 1)(|V (G)| − 1)] and λ(G¤H) = max{4, λ(G), λ(H)}.

Schmeichel [21], Ali [2, 3] and Jaradat [13] gave an upper bound for the basis
number of the semi-strong and the direct products of some special graphs.
They proved the following results:

Theorem 1.2.3 (Schmeichel). For each n ≥ 7, b(Kn • P2) = 4.

Theorem 1.2.4 (Ali). For each integers n,m, b(Km •Kn) ≤ 9.

Theorem 1.2.5 (Ali). For any two cycles Cn and Cm with n,m ≥ 3,
b(Cn × Cm) = 3.

Theorem 1.2.6 (Jaradat). For each bipartite graphs G and H,
b(G×H) ≤ 5 + b(G) + b(H).

Theorem 1.2.7 (Jaradat). For each bipartite graph G and cycle C,
b(G× C) ≤ 3 + b(G).

The strong product was studied by Imrich and Stadler [12] and Jaradat [15].
They gave the following results:

Theorem 1.2.8 (Imrich and Stadler). For any two graphs G and H, l(G£
H) = l(G)+l(H)+3[dimC(G£H)−dimC(G)−dimC(H)] and λ(G£H) =
max{3, λ(G), λ(H)}.

Theorem 1.2.9 (Jaradat). Let G be a bipartite graph and H be a graph.
Then b(G £ H) ≤ max{b(H) + 1, 2∆(H) + b(G)− 1, b3∆(TG)+1

2 c, b(G) + 2}.

The results cited above trigger off the following question: Can we construct
a minimum cycle basis and find the basis number of the wreath product of
graphs? In this paper we will answer this question for a class of graphs. In
fact, we construct a minimum cycle basis of the wreath product of two paths,
a cycle with a path, a path with a star, a cycle with a star, a path with a
wheel and a cycle with a wheel and we give their basis numbers. Moreover,
we give the total lengths and lengths of longest cycles of the minimum cycle
bases of the same.
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In the rest of this paper, fB(e) stand for the number of elements of B
containing the edge e where B ⊆ C(G).

3. The Basis Number of the Wreath Product of
Graphs

In this section, we investigate the basis number of the wreath product of two
paths, a cycle with a path, a path with a star, a cycle with a star, a path with
a wheel and a cycle with a wheel. Also, in this section, we shall say B is a
basis of C(G), rather than saying B is a cycle basis of G. Let {v1, v2, . . . , vm}
be a set of vertices and ab be an edge. Also, let Pm = v1v2 . . . vm. Then the
automorphism group of the path Pm consists of two elements the identity,
I, and the automorphism α which is defined as follows:

α(vi) = vm−j+1, j = 1, 2, . . . ,m.

Therefore, abnPm is decomposable into ab¤Pm∪M1 where M1 is the graph
with the edge set {(a, vj)(b, vm−j+1), (a, vm−j+1)(b, vj)|j = 1, 2, . . . , bm/2c}.
Now, we define the following sets of cycles (see Figure 1):

(a,vj) (b,vj)

Nab
(j)

(a,vj+1) (b,vj+1) (a,vj+1)

(a,vj) (b,vj)
Kab

(j)
(a,vj)

(b,vm-j)

(a,vm-j+1)(b,vm-j+1)(a,vm-j+1)

Rab
(j)

(a,vm/2+1) (b,vm/2+1)

(a,vm/2)

(b,vm/2+1)

Zab
(2) Zab

(4)

(a,vm/2)

Zab
(1) Zab

(3)

Figure 1. These graphs illustrate the cycles K(j)
ab , N (j)

ab , R(j)
ab , Z(1)

ab , Z(2)
ab , Z(3)

ab

and Z(4)
ab for even m.
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Kab =
{
K(j)

ab = (a, vj)(b, vj)(b, vj+1)(a, vj+1)(a, vj)|j = 1, 2, . . . , m− 1
}

,

Nab =
{
N (j)

ab = (a, vj)(b, vj)(a, vm−j+1)(b, vm−j+1)(a, vj)|j =1, 2, . . . ,bm/2c
}

,

Rab =
{
R(j)

ab = (a, vj)(a, vj+1)(b, vm−j)(b, vm−j+1)(a, vj)|j =1, 2, . . . ,bm/2c
}

,

Zab =





Z(1)
ab = (a, vbm/2c)(b, vbm/2c+1)(a, vbm/2c+1)(a, vbm/2c),

Z(2)
ab = (a, vbm/2c)(b, vbm/2c)(b, vbm/2c+1)(a, vbm/2c),

Z(3)
ab = (a, vbm/2c)(a, vbm/2c+1)(b, vbm/2c)(a, vbm/2c),

Z(4)
ab = (a, vbm/2c+1)(b, vbm/2c)(b, vbm/2c+1)(a, vbm/2c+1)





.

Lemma 3.1. Let m be an odd integer. Then Aab = Kab ∪ Nab ∪ Rab is a
linearly independent subset of C(abn Pm).

Proof. We prove that Kab is linearly independent using mathematical in-
duction on m. If m = 1, then Kab consists only of one cycle K(1)

ab . Thus,
Kab is linearly independent. Assume that m is greater than 2 and it is
true for less than m. Note that Kab = (∪m−2

j=1 K(j)
ab ) ∪ K(m−1)

ab . Since K(m−1)
ab

contains the edge (a, vm)(b, vm) which is not in any cycle of ∪m−2
j=1 K(j)

ab , as
a result Kab is linearly independent. By a similar way we show that each
of Nab and Rab are linearly independent. Any linear combination of cy-
cles of Rab must contain an edge of the form (b, vm−j+1)(a, vj) for some
1 ≤ j ≤ bm/2c, which is not in any cycle of Kab. Thus, Kab ∪Rab is linearly
independent. Similarly, each linear combination of Nab contains an edge of
the form (b, vj)(a, vm−j+1) for some 1 ≤ j ≤ bm/2c, which is not in any
cycle of Kab ∪ Rab. Therefore, Aab is linearly independent. The proof is
complete.

Remark 3.1. For an odd integer m let e ∈ abn Pm. Then
(1) if e = (a, vj)(a, vj+1) such that j ≤ bm/2c, then fKab

(e) = fRab
(e) = 1

and fNab
(e) = 0.

(2) If e = (a, vj)(a, vj+1) such that j ≥ bm/2c + 1, then fKab
(e) = 1 and

fRab
(e) = fNab

(e) = 0.
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(3) If e = (b, vj)(b, vj+1) such that j ≤ bm/2c, then fKab
(e) = 1 and

fRab
(e) = fNab

(e) = 0.
(4) If e = (b, vj)(b, vj+1) such that j ≥ bm/2c+1, then fKab

(e)=fRab
(e) = 1

and fNab
(e) = 0.

(5) If e = (a, vj)(b, vj) such that j 6= bm/2c+1, then fKab
(e) ≤ 2, fRab

(e) =
0 and fNab

(e) = 1.
(6) If e = (a, vbm/2c+1)(b, vbm/2c+1), then fKab

(e) = 2, fRab
(e) = 1 and

fNab
(e) = 0.

(7) If e = (a, vj)(b, vm−j+1) such that j ≤ bm/2c, then fKab
(e) = 0,

fRab
(e) ≤ 2 and fNab

(e) = 1.
(8) If e = (b, vj)(a, vm−j+1) such that j ≤ bm/2c, then fKab

(e) = fRab
(e) =

0 and fNab
(e) = 1.

Lemma 3.2. Let m be an even integer. Then Tab = Kab ∪ Nab ∪ Rab ∪
{Z(1)

ab ,Z(2)
ab ,Z(3)

ab } − {K(bm/2c)
ab ,N (bm/2c)

ab ,R(bm/2c)
ab } is a linearly independent

subset of C(abn Pm).

Proof. Using the same argument as in Lemma 3.1, we have that Kab ∪
Nab ∪ Rab − {K(bm/2c)

ab ,N (bm/2c)
ab ,R(bm/2c)

ab } is linearly independent. Since
Z(1)

ab contains (a, vbm/2c)(a, vbm/2c+1) which is not in any cycle of Kab∪Nab ∪
Rab − {K(bm/2c)

ab ,N (bm/2c)
ab ,R(bm/2c)

ab }, Kab ∪Nab ∪Rab ∪ {Z(1)
ab } − {K(bm/2c)

ab ,

N (bm/2c)
ab ,R(bm/2c)

ab } is linearly independent. Also, Z(2)
ab contains (b, vbm/2c)

(b, vbm/2c+1) which is not in any cycle of Kab∪Nab∪Rab∪{Z(1)
ab }−{K(bm/2c)

ab ,

N (bm/2c)
ab ,R(bm/2c)

ab }. Hence, Kab ∪ Nab ∪ Rab ∪ {Z(1)
ab ,Z(2)

ab } − {K(bm/2c)
ab ,

N (bm/2c)
ab ,R(bm/2c)

ab } is linearly independent. Similarly, Z(3)
ab contains the

edge (a, vbm/2c+1)(b, vbm/2c) which is not in any cycle of Kab ∪ Nab ∪ Rab ∪
{Z(1)

ab ,Z(2)
ab }−{K(bm/2c)

ab ,N (bm/2c)
ab ,R(bm/2c)

ab }. Therefore, Tab is linearly inde-
pendent. The proof is complete.

Throughout this paper we consider Bab =
{ Aab, if m is odd,
Tab, if m is even.

Remark 3.2. For any integer m let e ∈ ab n Pm. Then from Lemma 3.1
and Lemma 3.2 and as in Remark 3.1 we have that
(1) if e = (a, vj)(a, vj+1) such that j ≤ bm/2c, then fBab

(e) ≤ 2.
(2) If e = (a, vj)(a, vj+1) such that j ≥ bm/2c+ 1, then fBab

(e) = 1.
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(3) If e = (b, vj)(b, vj+1) such that j ≤ bm/2c, then fBab
(e) = 1.

(4) If e = (b, vj)(b, vj+1) such that j ≥ bm/2c+ 1, then fBab
(e) ≤ 2.

(5) If e = (a, vj)(b, vj) such that j 6= 1,m, then fBab
(e) ≤ 3.

(6) If e = (a, v1)(b, v1) or (a, vm)(b, vm), then fBab
(e) ≤ 2.

(7) If e = (a, vj)(b, vm−j+1) such that j ≤ bm/2c, then fBab
(e) ≤ 3.

(8) If e = (b, vj)(a, vm−j+1) such that j ≤ bm/2c, then fBab
(e) = 1.

Lemma 3.3. If m ≥ 3, then b(abn Pm) ≥ 3.

Proof. Case 1. m is odd. Let H1 be the subgraph of abnPm induced by the
following set of vertices {(a, vbm/2c), (a, vbm/2c+2), (b, vbm/2c+1), (b, vbm/2c),
(b, vbm/2c+2), (a, vbm/2c+1)}. Then H1 is isomorphic to K3,3 and so by
MacLane’s Theorem b(abn Pm) ≥ 3.

Case 2. m is even. Let H2 be the subgraph with vertex set {(a, vbm/2c−1),
(a, vbm/2c), (a, vbm/2c+1), (a, vbm/2c+2), (b, vbm/2c−1), (b, vbm/2c), (b, vbm/2c+1),
(b, vbm/2c+2)} and edge set consists of the following nine paths: P1 =
(a, vbm/2c+1)(a, vbm/2c+2)(b, vbm/2c+2), P2 = (a, vbm/2c+1) (a, vbm/2c), P3 =
(a, vbm/2c+1)(b, vbm/2c), P4 = (a, vbm/2c)(a, vbm/2c−1), P5 = (a, vbm/2c)(b,
vbm/2c+1), P6 = (a, vbm/2c−1)(b, vbm/2c−1)(b, vbm/2c), P7 = (a, vbm/2c−1)
(b, vbm/2c+2), P8 = (b, vbm/2c)(b, vbm/2c+1), P9 = (b, vbm/2c+1)(b, vbm/2c+2).
Then H2 is homeomorphic to K3,3. Thus, by MacLane’s Theorem b(ab n
Pm) ≥ 3. The proof is complete.

Let Pn = a1a2 . . . an. Then the graph Pn n Pm is decomposable into
Pn¤Pm ∪ M2 where M2 is the graph consisting of the following edge set
∪n−1

i=1 {(ai, vj) (ai+1, vn−j+1), (ai, vn−j+1) (ai+1, vj) | j = 1, 2, . . . , bm/2 c}.
Hence, |E(Pn n Pm)| = n(m − 1) + m(n − 1) + 2(n − 1) bm/2c. There-
fore, dim C(Pn n Pm) = n(m− 1) + m(n− 1) + 2(n− 1) bm/2c − nm + 1 =
mn−n−m+2(n−1) bm/2c+1. The following lemma will be used frequently
in the sequel.

Lemma 3.4 (Jaradat, Alzoubi and Rawashdeh). Let A and B be two lin-
early independent sets of cycles such that E(A) ∩ E(B) is an edge set of a
forest. Then A ∪B is linearly independent.

Theorem 3.5. Let Pn and Pm be two paths of order n,m ≥ 2. Then
b(Pn n Pm) ≤ 3. Moreover, the equality holds if n ≥ 2 and m ≥ 3.
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Proof. By Lemma 3.3 we have that b(Pn n Pm) ≥ 3 for any n ≥ 2,m ≥ 3.
To prove that b(Pn n Pm) ≤ 3, it suffices to exhibit a 3-fold cycle ba-
sis. Define B(Pn n Pm) = ∪n−1

i=1 Baiai+1 . We now show that B(Pn n Pm) is
linearly independent using mathematical induction on n. If n = 2, then
B(Pn n Pm) = Ba1a2 which is linearly independent by Lemma 3.1 and 3.2.
Assume n ≥ 3 and it is true for less than or equal to n−2. Note that B(Pnn
Pm) =

(∪n−2
i=1 Baiai+1

) ∪ (Ban−1an

)
and E

(∪n−2
i=1 Baiai+1

) ∩ E
(Ban−1an

)
=

E(an−1¤Pm) which is an edge set of a path. Thus, by Lemma 3.4, B(Pn n
Pm) is linearly independent. Since

|Baiai+1 | = |Aaiai+1 | = (m− 1) + 2 bm/2c

if m is odd, and

|Baiai+1 | = |Taiai+1 | = (m− 2) + 2(bm/2c − 1) + 3

= (m− 1) + 2 bm/2c ,

if m is even, we obtain

B(Pn n Pm) =
n−1∑

i=1

|Baiai+1 |

= (n− 1) ((m− 1) + 2 bm/2c)
= mn−m− n + 2(n− 1) bm/2c+ 1
= dim C(Pn n Pm).

Thus, B(PnnPm) is a basis for C(PnnPm). We now show that B(PnnPm)
is a 3-fold basis. Let e ∈ E(Pn n Pm). Then
(1) If e = (ai, vj)(ai, vj+1) such that j ≤ bm/2c, then fB(PnnPm)(e) =

fBai−1ai
(e) + fBaiai+1

(e) = 1 + 2 = 3.

(2) If e = (ai, vj)(ai, vj+1) such that j ≥ bm/2c + 1, then fB(PnnPm)(e) =
fBai−1ai

(e) + fBaiai+1
(e) = 2 + 1 = 3.

(3) If e is not of the above form, then e belongs only to cycles of Baiai+1

for some 1 ≤ i ≤ n− 1 and so fB(PnnPm)(e) = fBaiai+1
(e) ≤ 3.

The proof is complete.

Now we turn our attention to deal with Cn n Pm. Let Cn = a1a2 . . . ana1.
Note that Cn n Pm is decomposable into Pn n Pm ∪ M3 where M3 is the
subgraph consists of the following edges: {(a1, vj)(an, vj)|j = 1, 2, . . . ,m} ∪
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{(a1, vj)(an, vm−j+1), (a1, vm−j+1)(an, vj)|j = 1, 2, . . . , bm/2c}. Therefore,
|E(Cn n Pm)| = |E(Pn n Pm)| + m + 2 bm/2c and so dim C(Cn n Pm) =
C(Pn n Pm) + m + 2 bm/2c = mn− n + 2n bm/2c+ 1.
Let G and H be two graphs and e = (a, u)(b, v) ∈ E(G n H). Then the
projection of e in G, PG(e), is defined to be the edge ab if a 6= b and to be
the vertex a if a = b (see [12]).

Lemma 3.6. Cn¤vi is relevant in Cn n Pm for each i = 1, 2, . . . , n.

Proof. For simplicity assume that ei = aiai+1 for each i = 1, 2, . . . , n − 1
and en = ana1. Let O be any cycle of Cn n Pm of length less than n. Since

E(ei n Pm) ∩ E(ej n Pm) =

{
aj¤Pm, if j − i = 1, n− 1,
φ, if j − i 6= 1, n− 1,

(assuming i < j), as a result O consists of edges of successive graphs of
{er n Pm}n

r=1, say el+1 n Pm, el+2 n Pm, . . . , el+k n Pm for some l, k < n.
Since ei n Pm = (ai¤Pm)∪ (ai+1¤Pm) ∪ Xi where Xi is a bipartite graph
with independent sets of vertices ai×V (Pm) and ai+1×V (Pm), as a result O
contains even number of edges with projection el+s for each s = 1, 2, . . . , k.
Thus, if

Cn¤v1 =
f∑

i=1

Oi (mod 2).

where Oi is a cycle of length less than n. Then the number of edge of
the ring sum O1 ⊕ O2 ⊕ · · · ⊕ Of with projection ei in Cn is even for each
i = 1, 2, . . . , n. In contrast, the number of edges of Cn¤v1 with projection
ei in Cn is 1 for each i = 1, 2, . . . , n. Thus, Cn¤v1 is relevant. The proof is
complete.

Theorem 3.7. Let Cn be a cycle and Pm be a path. Then b(CnnPm) = 3.

Proof. By Lemma 3.3, to prove that b(Cn n Pm) ≥ 3, it suffices to show
that b(Cn n P2) ≥ 3. Let H be the spanning subgraph of Cn n P2 with
the edge set consists of the following paths: (a1, v1)(a1, v2), (a2, v1)(a2, v2),
(a1, v1) (a2, v2), (a1, v2) (a2, v1), (a1, v2) (an, v1), (a1, v1) (an, v2), (an, v1)
(an, v2), (a2, v2) (a3, v1) (a4, v1) . . . (an, v1) and (a2, v1) (a3, v2) (a4, v2) . . .
(an, v2). Then, H is homeomorphic to K3,3 and so b(Cn n P2) ≥ 3. Define
B(CnnPm) = B(PnnPm)∪Bana1∪{Cn¤v1} where B(PnnPm) is as defined in
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Theorem 3.5. Now, since E(PnnPm)∩E(Bana1) = E(a1¤Pm)∪E(an¤Pm)
which is an edge set of a forest, by Lemma 3.4 B(PnnPm)∪Bana1 is linearly
independent. Since each cycle of B(Cn n Pm) − {Cn¤v1} is of length less
than n and since Cn¤v1 is relevant in Cn n Pm (Lemma 3.6), B(Cn n Pm)
is linearly independent. Since

|B(Cn n Pm)| = mn−m− n + (n− 1)2 bm/2c+ 1 + (m− 1) + 2 bm/2c+1
= mn− n + 2n bm/2c+ 1
= dim C(Cn n Pm),

B(Cn n Pm) is a basis of C(Cn n Pm). It is an easy task to show that
B(Cn n Pm) is a 3-fold basis. The proof is complete.

Now consider Sm to be the star with the vertex set {v1, v2, . . . , vm} and
dSm(v1) = m − 1. Note that the automorphism group of Sm is isomor-
phic to the symmetric group on the set {v2, v3, . . . , vm}. Therefore, for any
γ ∈Aut(G), γ(v1) = v1. Moreover, for any two vertices vi, vj such that 2 ≤
i, j ≤ m there is an automorphism α such that α(vi) = vj . Hence, the graph
abnSm is decomposable into (a¤Sm)∪ (b¤Sm)∪{(a, v1)(b, v1)}∪ab[Nm−1]
where Nm−1 is the null graph with the vertex set {v2, v3, . . . , vm}. Let

Hab = {(a, vj)(b, vl)(a, vj+1)(b, vl+1)(a, vj) : 2 ≤ j, l ≤ m}.
Then Hab is the Schemeichel’s 4-fold basis of C(ab[Nm−1]) (see Theorem 2.4
in [21]). Moreover,
(1) if e = (a, v2)(b, vm) or e = (a, vm)(b, v2) or e = (a, v2)(b, v2) or e =

(a, vm)(b, vm), then fHab
(e) = 1.

(2) If e = (a, v2)(b, vl) or (a, vj)(b, v2) or (a, vm)(b, vl) or (a, vj)(b, vm), then
fHab

(e) ≤ 2.
(3) If e ∈ E(e[Nm−1]) and is not of the above form, then fHab

(e) ≤ 4. Now,
define the following sets of cycles (see Figure 2):

Gab =
{
G(l)

ab = (a, v1)(a, vl)(b, v2)(a, vl+1)(a, v1)|2 ≤ l ≤ m− 1
}

,

and
Sab = K(1)

ab = {(a, v1)(a, v2)(b, v2)(b, v1)(a, v1)}.

Lemma 3.8. Gab ∪ Gba ∪ Sab is a linearly independent subset of cycles of
C(abn Sm).
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Proof. Gab is a basis for the cycle subspace of C(ab n Sm) corresponding
to the planar subgraph of abn Sm obtained by pasting all the cycles of Gab,
which are 4-cycles, at the common edges of the successive cycles. Similarly,
Gba is a basis for the cycle subspace of C(abnSm). Since E(Gab)∩E(Gba) =
{(a, v1)(a, v2), (a, v2)(b, v2), (b, v2)(b, v1)} which is an edge set of a path and
since Sab contains (b, v1)(a, v1) which occurs in no cycle of Gab ∪ Gba, Gab ∪
Gba ∪ Sab is a linearly independent set. The proof is complete.

Lemma 3.9. Lab = Hab ∪ Gab ∪ Gba ∪ Sab is a linearly independent set of
cycles.

Proof. The proof of this lemma follows by noting that every linear com-
bination of cycles of Gab ∪ Gba ∪ Sab contains at least one edge of the set
E(a¤Sm) ∪ E(b¤Sm) which occurs in no cycle of Hab. The proof is com-
plete.

Remark 3.3. Let e ∈ E(Pn n Sm). Then
(1) if e = (a, v1)(a, vl) or (b, v1)(b, vl), then fLab

(e) ≤ 2.
(2) If e = (a, v2)(b, v2), then fLab

(e) = 4.
(3) If e = (a, vm)(b, vm) or (a, v1)(b, v1), then fLab

(e) = 1.
(4) If e = (a, v2)(b, vl) or (a, vj)(b, v2) such that m > j, l ≥ 2, then

fLab
(e) ≤ 4.

(6) If e = (a, vm)(b, vl) or (a, vj)(b, vm) such that j, l ≥ 2, then fLab
(e) ≤ 2.

(7) If e is not of the above form, then fLab
(e) = fHab

(e) ≤ 4.

The graph Pn n Sm is decomposable into (∪n
i=1(ai¤Sm)) ∪ Pn[Nm−1] ∪

(Pn¤v1). Thus |E(Pn n Sm)| = m2(n − 1) − m(n − 2) + n − 2. And so
dim C(Pn n Sm) = m2(n− 1)− 2m(n− 1) + n− 1.

Lemma 3.10. If n ≥ 4 and (m2 + 1)(n − 1) − m(5n − 2) + 3 ≤ 0, then
m < 6.

Proof. (m2 + 1)(n − 1) ≤ m(5n − 2) − 3. Hence (m2 + 1)(n − 1) ≤
5m(n− 1) + 3(m− 1) which implies that (m2 + 1) ≤ 5m + 3(m− 1)/(n− 1)
and so m ≤ 5+3(m−1)/m(n−1)−1/m. But 3(m−1)/m(n−1)−1/m < 1.
Therefore, m < 6.

Theorem 3.11. For any path Pn of order n ≥ 2 and star Sm, we have that
b(Pn n Sm) ≤ 4. Moreover, the equality holds if n ≥ 4 and m ≥ 6.
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Proof. Defined B(PnnSm) = ∪n−1
i=1 Laiai+1 . Then by Lemma 3.9 and using

the same arguments as in Theorem 3.5 we have that B(Pn n Sm) is linearly
independent. Now,

|Laiai+1 | = m2 − 2m + 1.

Thus,

B(Pn n Sm) =
n−1∑

i=1

(m2 − 2m + 1) = dim C(Pn n Sm).

Therefore, B(PnnSm) is a basis for C(PnnSm). Now we show that B(Pnn
Sm) is a 4-fold basis. Let e ∈ E(Pn n Sm). Then
(1) if e = (ai, v1)(ai, vl), then fB(PnnSm)(e) = fLai−1ai

(e) + fLaiai+1
(e) ≤

2 + 2 = 4.
(2) If e = (ai, vj)(ai+1, vl) such that j, l ≥ 2, then fB(PnnSm)(e) = fLaiai+1

(e)
≤ 4.

(3) If e = (ai, v1)(ai+1, v1), then fB(PnnSm)(e) = fLaiai+1
(e) = 1.

Now, we show that b(PnnSm) ≥ 4 for each n ≥ 4 and m ≥ 6. Suppose that
B is a 3-fold basis of C(Pn n Sm) for each n ≥ 4 and m ≥ 6. Since the girth
of Pn n Sm is 4, as a result

4 dim C(Pn n Sm) ≤ 3|E(Pn n Sm)|
and so

4(nm2 − 2mn−m2 + 2m + n− 1) ≤ 3(nm2 −mn−m2 + 2m + n− 2),
nm2 − 5mn−m2 + 2m + n + 2 ≤ 0,

m2(n− 1)−m(5n− 2) + (n− 1) + 3 ≤ 0,

(m2 + 1)(n− 1)−m(5n− 2) + 3 ≤ 0.

By Lemma 3.10, for n ≥ 4, we have that m < 6. This is a contradiction.
The proof is complete.

Now, CnnSm is decomposable into PnnSm∪a1am[Nm−1]∪{(a1, v1)(am, v1)}
where Nm−1 is the null graph with the vertex set {v2, v3, . . . , vm}. Thus,
|E(Cn n Sm)| = |E(Pn n Sm)| + (m − 1)2 + 1. Hence, dim C(Cn n Sm) =
dim C(Pn n Sm) + (m − 1)2 + 1 = n(m − 1)2 + 1. By applying the same
arguments as in Lemma 3.6 in Cn n Sm, we have the following result:

Lemma 3.12. Cn¤vi is relevant in Cn n Sm for each i = 1, 2, . . . , n.
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Theorem 3.13. For any cycle Cn and star Sm, we have that b(CnnSm) ≤4.
Moreover, the equality holds if n ≥ 4 and m ≥ 5.

Proof. Define B(CnnSm) = B(PnnSm)∪Lana1 ∪{Cn¤v1}. By using the
same arguments as in Theorem 3.7, we show that B(Cn n Sm) is a 4-fold
basis of C(Cn n Sm). On the other hand to show that b(Cn n Sm) ≥ 4, we
suppose that B is a 3-fold basis of the space C(Cn n Sm) for each n ≥ 4
and m ≥ 5, then we argue more or less as in Theorem 3.12 by taking into
account that if n ≥ 4 and nm2 − 5mn + n + 4 ≤ 0, then m < 5. The proof
is complete.

Now, consider Wm to be the wheel graph with vertex set {v1, v2, . . . , vm}
and dWm(v1) = m − 1. Note that for m ≥ 5, Aut(Wm) is isomorphic to
Aut(Sm). Hence, abnWm is decomposable into abn Sm ∪ (a¤C) ∪ (b¤C)
where C = v2v3 . . . vmv2. For each k = 2, 3, . . . ,m, define,

P(k)
ab = {P(k,j)

ab = (b, vk)(a, vj)(a, vj+1)(b, vk)|2 ≤ j ≤ m− 1},
Qa = {(a, v2)(a, v3) . . . (a, vm)(a, v2)}.

Analogously, we define Qb (see Figure 2).

Gab
(l)

(a,v1 )

(b,v2 )

(a,vl+1 )

(a,vl )

(a,vj+1 )

(a,vj )
(b,vk)

Pab
(k,j)

(a,vm )

(a,v2 )

Qa

Figure 2. These graphs illustrate the cycles G(l)
ab , P(k,j)

ab and Qa.

Lemma 3.14. (∪m
k=2P(k)

ab ) ∪ P(m)
ba is linearly independent.

Proof. Since P(k,j)
ab contains an edge of the form (a, vj)(a, vj+1) which is not

in any other cycle of P(k)
ab , as a result P(k)

ab is linearly independent for each
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k = 2, 3, . . . ,m. Now by the inductive step, we assume that ∪m−1
k=2 P(k)

ab is
linearly independent. Note that E(∪m−1

k=2 P(k)
ab )∩E(P(m)

ab ) = E(a¤v2v3 . . . vm)
which is an edge set of a path. Thus, ∪m

k=2P(k)
ab is linearly independent. Now,

each cycle P(m,j)
ba contains an edge of the form (b, vj)(b, vj+1) which occurs

in no other cycles of (∪m
k=2P(k)

ab )∪P(m)
ba . Thus, (∪m

k=2P(k)
ab )∪P(m)

ba is linearly
independent. The proof is complete.

Lemma 3.15. If n ≥ 2 and m2(n− 1)− 4m(n− 1)− 2m+3n− 1 ≤ 0, then
m < 6.

Proof. m2(n − 1) ≤ 4m(n − 1) + 2m − 3n + 1. Thus, m ≤ 4 + 2/(n − 1)
−3n/m(n − 1) + 1/m(n − 1) which implies that m ≤ 4 + 2 − 2/m(n − 1).
Hence, m < 6.

Lemma 3.16. If n ≥ 2 and m2(n − 1) − 4m(n − 1) − 2m + 2 ≤ 0, then
m < 6.

Proof. As in Lemma 3.15 we have that m ≤ 4 + 2/(n − 1) − 2/m(n − 1)
which implies that m ≤ 4 + 2− 2/m(n− 1) < 6.

Lemma 3.17. If n ≥ 2 and m2(n− 1)− 7m(n− 1)− 5m+3n+2 ≤ 0, then
m < 12.

Proof. As in Lemma 3.15, we have that m ≤ 7 + 5/(n− 1)− 3n/m(n− 1)
−2/m(n− 1) < 12.

Note that PnnWm is decomposable into PnnSm∪ (∪n
i=1(ai¤C)) where

C = v2v3 . . . vmv2. Thus, |E(PnnWm)| = |E(PnnSm)|+ (m− 1)n. Hence,
dim C(Pn nWm) = (n− 1)m2 + 2m−mn− 1.

Theorem 3.18. For each wheel Wm of order m ≥ 5 and path Pn of order
n ≥ 2, we have that b(Pn nWm) ≤ 4. Moreover, the equality holds if n ≥ 2
and m ≥ 12.

Proof. Define B(Pn n Wm) = B(Pn n Sm) ∪ (∪n−1
i=1 P(m)

aiai+1) ∪ P(m)
anan−1 ∪

(∪n
i=1Qai) where B(PnnSm) is defined as in Theorem 3.11. By Lemma 3.14

each one of P(m)
aiai+1 and P(m)

anan−1 is linearly independent. Since E(P(m)
aiai+1) ∩

E(P(m)
alal+1) = ∅ whenever i 6= l, ∪n−1

i=1 P(m)
aiai+1 is linearly independent. Now,

each linear combination of cycles of P(m)
anan−1 contains at least one edge of
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E(an¤v1v2 . . . vm) which is not in any cycle of ∪n−1
i=1 P(m)

aiai+1 . Thus
(∪n−1

i=1 P(m)
aiai+1)∪P(m)

anan−1 is linearly independent. E(Qai)∩E(Qaj ) = ∅ when-
ever i 6= j, alsoQai is the only cycle of B(PnnWm) containing (ai, vm)(ai, v2)
for each i. Therefore, (∪n−1

i=1 P(m)
aiai+1)∪P(m)

anan−1∪(∪n
i=1Qai) is linearly indepen-

dent. Any linear combination of cycles of (∪n−1
i=1 P(m)

aiai+1)∪P(m)
anan−1∪(∪n

i=1Qai)
contains at least one edge of the set ∪n

i=1E(ai¤v2v3, . . . , vmv2) which is not
in any cycle of B(Pn n Sm). Thus, B(Pn n Wm) is linearly independent.
Since

|B(Pn nWm)| = |B(Pn n Sm)|+
n−1∑

i=1

|P(m)
aiai+1

|+ |P(m)
anan−1

|+
n∑

i=1

|Qai |

= m2n− 2mn−m2 + 2m + (n− 1) + (n− 1)(m− 2)

+(m− 2) + n

= (n− 1)m2 + 2m−mn− 1

= dim C(Pm nWn),

B(Pm nWn) is a basis for C(Pm nWn). Now we show that B(Pm nWn) is
a 4-fold basis. Let e ∈ E(Pn nWm). Then
(1) if e = (ai, v1)(ai, vl), then fB(PnnWm)(e) = fLai−1ai

(e) + fLaiai+1
(e) ≤

2 + 2 = 4.
(2) If e = (ai, vj)(ai+1, vl) such that m > j, l ≥ 2, then fB(PnnWm)(e) =

fLaiai+1
(e) ≤ 4.

(3) If e = (ai, vm)(ai+1, vl) or (ai, vl)(ai+1, vm) such that m > l ≥ 2, then
fB(PnnWm)(e) = fLaiai+1

+ fP(m)
aiai+1

∪P(m)
anan−1

(e) ≤ 2 + 2 = 4.

(4) If e = (ai, v1)(ai+1, v1), then fB(PnnWm)(e) = fSaiai+1
(e) = 1.

(5) If e = (ai, v2)(ai, vm), then fB(PnnWm)(e) = fQai
(e) = 1.

(6) If e = (ai, vm)(ai+1, vm), then fB(PnnWm)(e) = fHaiai+1
(e)+fP(m)

aiai+1

(e)+

fP(m)
anan−1

(e) ≤ 1 + 1 + 1 = 3.

(7) If e = (ai, vj)(ai, vj+1) such that j ≥ 2 and i ≤ n− 1, then
fB(PnnWm)(e) = fP(m)

aiai+1

(e) + fQai
(e) ≤ 1 + 1 = 2.

(8) If e = (an, vj)(an, vj+1) such that j ≥ 2, then fB(PnnWm)(e) =
fP(m)

anan−1

(e) + fQan
(e) ≤ 1 + 1 = 2.
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(9) If e = (ai, v2)(ai+1, vm) or (ai, vm)(ai+1, v2), then fB(PnnWm)(e) =
fLanan−1

(e) + fPaiai+1∪P
(m)
anan−1

(e) ≤ 2 + 1 = 2.

On the other hand, to show that b(Pn n Wm) ≥ 4 for any n ≥ 2 and
m ≥ 12, we have to exclude any possibility for the cycle space C(Pn n
Wm) to have a 3-fold basis for any n ≥ 2 and m ≥ 12. To this end,
suppose that B is a 3-fold basis of the cycle space C(PnnWm) for any n ≥ 2
and m ≥ 12. First, suppose that B consists only of 3-cycles. Then |B| ≤
3(m−1)n because any 3-cycle must contain an edge of E(ai¤(v2v3 . . . vmv2)),
for i = 1, 2, . . . , n and each edge is of fold at most 3. This is equivalent to
the inequality m2(n − 1) − mn + 2m − 1 ≤ 3(m − 1)n which implies that
m2(n − 1) − 4m(n − 1) − 2m + 3n − 1 ≤ 0 and so by Lemma 3.15, m < 6.
This is a contradiction. Now, suppose that B consists only of cycles of
length greater than or equal to 4. Then 4|B| ≤ 3|E(Pn nWm)| because the
length of each cycle of B greater than or equal to 4 and each edge is of fold
at most 3. Thus, 4(m2(n − 1) − mn + 2m − 1) ≤ 3(m2(n − 1) + 2m − 2)
which is equivalent to m2(n − 1) − 4m(n − 1) − 2m + 2 ≤ 0 and so by
Lemma 3.16, m < 6. This is a contradiction. Finally, Suppose that B
consists of r 3-cycles and f cycles of length greater than or equal to 4. Then
f ≤ ⌊

(3(m2(n− 1) + 2m− 2)− 3r)/4
⌋

because the length of each cycle of r
is 3 and each cycle of f is at least 4 and the fold of each edge is at most 3.
Hence, |B| = r + f ≤ r +

⌊
(3(m2(n− 1) + 2m− 2)− 3r)/4

⌋
which implies

that 4(m2(n − 1) − mn + 2m − 1) ≤ r + 3(m2(n − 1) + 2m − 2). Thus,
4(m2(n − 1) − mn + 2m − 1) ≤ 3(m − 1)n + 3(m2(n − 1) + 2m − 2). By
simplifying the inequality we have that m2(n−1)−7m(n−1)−5m+3n+2
≤ 0. Thus, by Lemma 3.17 m < 12. This is a contradiction. The proof is
complete.

Now, Cn n Wm is decomposable into Pn n Wm ∪ a1am[Nm−1] ∪ {(a1, v1)
(am, v1)} where Nm−1 is the null graph with the vertex set {v2, v3, . . . , vm}.
Thus, |E(CnnWm)| = |E(PnnWm)|+(m−1)2+1. Hence, dim C(CnnWm) =
dim C(Pn nWm) + (m− 1)2 + 1 = nm2 −mn + 1. By employing the same
ideas as in Lemma 3.6, we have the following result.

Lemma 3.19. Cn¤vi is relevant in Cn nWm.

Theorem 3.20. For each cycle Cn of order n and wheel Wm of order m ≥ 5,
we have that b(Cn nWm) ≤ 4. Moreover, the equality holds if and only if
n ≥ 3 and m ≥ 7.
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Proof. Define B(Cn nWm) = B(Pn nWm) ∪Lana1 ∪ {Cn¤v1}. By noting
that E(Lana1) ∩ E(B(Pn nWm)) = (a1¤Sm) ∪ (an¤Sm) which is an edge
set of a forest, we have that B(PnnWm) −{Cn¤v1} is linearly independent.
By Lemma 3.18, B(Pn nWm) is linearly independent. Since

|B(Cn nWm)| = |B(Pn nWm)|+ |Lana1 |+ 1

= nm2 −mn + 1

= dim C(Cm nWn),

B(Cm n Wn) is a basis for C(Cm n Wn). Now we can easily show that
B(CmnWn) is a 4-fold basis. To show that C(CmnWn) has no 3-fold basis
we argue more or less as in the last paragraph of Theorem 3.18. The proof
is complete.

4. The Minimum Cycle Bases of the Wreath Prod-
uct of Graphs

In this section, we present minimum cycle bases (MCBs) for the wreath
product of two paths, a cycle with a path, a path with a star, a cycle with
a star, a path with a wheel and a cycle with a wheel. Moreover, we give the
length of their maximum cycle.

Theorem 4.1. B(Pn n Pm) is a minimum cycle basis of Pn n Pm.

Proof. Recall that a MCB is obtained by a greedy algorithm, that is, an
algorithm that selects independent cycles starting with the shortest ones
from the set of all cycles. We consider two cases:

Case 1. m is odd. Then the girth of Pn n Pm is 4. Since each cycle of
B(Pn n Pm) is of length 4, as a result B(Pn n Pm) is a MCB.

Case 2. m is even. Note that the only 3-cycles of PnnPm are ∪n−1
i=1 Zaiai+1

and only three cycles of the four cycles of Zaiai+1 are linearly independent
for each i = 1, 2, . . . , n−1. Thus, {Z(1)

aiai+1 ,Z(2)
aiai+1 ,Z(3)

aiai+1 |i = 1, 2, . . . n−1}
is a set consisting of the largest number of 3-cycles linearly independent of
C(PnnPm). Since {Z(1)

aiai+1 ,Z(2)
aiai+1 ,Z(3)

aiai+1 |i = 1, 2, . . . n−1} ⊆ B(PnnPm)
and B(Pn n Pm) − {Z(1)

aiai+1 ,Z(2)
aiai+1 ,Z(3)

aiai+1 |i = 1, 2, . . . n − 1} are 4-cycles,
B(Pn n Pm) is MCB. The proof is complete.
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Corollary 4.2.

l(Pn n Pm) =
{

4 (mn−m− n + 2(n− 1) bm/2c+ 1) , if n is odd,
4mn− 4m− 7n + 8(n− 1) bm/2c+ 7, if n is even.

λ(Pn n Pm) = 4.

Theorem 4.3. For each n ≥ 4, B(Cn n Pm) is a minimum cycle basis of
Cn n Pm.

Proof. By Lemma 3.6 and following, word by word, the same arguments
as in the proof of Theorem 4.1 by taking into account that in Case 2 the
set {Z(1)

aiai+1 ,Z(2)
aiai+1 , Z(3)

aiai+1 |i = 1, 2, . . . n − 1} ∪ {Z(1)
ana1 ,Z(2)

ana1 ,Z(3)
ana1} is

consisting of the largest number of 3-cycles linearly independent of C(Cn n
Pm), we have the result. The proof is complete.

Corollary 4.4.

For n ≥ 4, l(Cn n Pm) =
{

4mn− 3n + 8n bm/2c , if n is odd,
4mn− 6n + 8n bm/2c , if n is even.

and λ(Cn × Pm) = n.

By noting that each of Pn n Sm and Cr n Sm has no 3-cycle for each r ≥ 4
and by Theorems 3.11 and 3.13 and Lemma 3.12, we have the following
result.

Theorem 4.5. For each r ≥ 4, B(Pn n Sm) and B(Cr n Sm) are minimum
cycle bases.

Corollary 4.6. For each r ≥ 4, l(PnnSm) = 4(m2n−2mn−m2+2m+n−1),
l(Cr n Sm) = 4(m2r − 2mr + r + 1), λ(Pn n Pm) = 4 and λ(Cr n Sm) = r.

The proof of the following result is a straightforward.

Lemma 4.7. Let H be a subgraph of the graph G. Let A and B be a cycle
basis and a minimum cycle basis of H and G, respectively. If A ⊆ B, then
A is a minimum cycle basis of H.

In the following result Bai¤Wm denotes to the cycle basis of the wheel ai¤Wm

consisting of 3-cycles.

Theorem 4.8. B∗(Pn n Wm) = (∪n−1
i=1 ∪m

j=2 P(j)
aiai+1) ∪ (∪n−1

i=1 P(m)
ai+1ai) ∪

(∪n
i=1Bai¤Wm) ∪ (∪n−1

i=1 Saiai+1) and B∗(Cn n Wm) = B∗(Pn n Wm) ∪
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(∪m
j=2P(j)

ana1)∪P(m)
a1an ∪Sana1 ∪{Cn×v1} are minimum bases of PnnWm and

Cn nWm, respectively.

Proof. By Lemma 4.7, it is enough to show that B∗(Cn n Wm) is a
minimum cycle basis of Cn n Wm and B∗(Pn n Wm) is a cycle basis of
Pn nWm. By Lemma 3.14, each one of the two sets (∪m

j=2P(j)
aiai+1) ∪P(m)

ai+1ai

and (∪m
j=2P(j)

ana1) ∪ P(m)
a1an is linearly independent. Note that

E
((
∪m

j=2P(j)
akak+1

)
∪ P(m)

ak+1ak

)
∩ E

(
∪k−1

i=1

((
∪m

j=2P(j)
aiai+1

)
∪ P(m)

ai+1ai

))

= E(ak¤v2v3 . . . vm)

which is an edge set of path for each k = 1, 2, . . . , n− 1 and

E
((
∪m

j=2P(j)
ana1

)
∪ P(m)

a1an

)
∩ E

(
∪n−1

i=1

((
∪m

j=2P(j)
aiai+1

)
∪ P(m)

ai+1ai

))

= E(a1¤v2v3 . . . vm) ∪ E(an¤v2v3 . . . vm)

which is an edge set of a forest. Thus,(∪n−1
i=1 ∪m

j=2 P(j)
aiai+1)∪ (∪n−1

i=1 P(m)
ai+1ai)∪

(∪m
j=2P(j)

ana1)∪P(m)
a1an is linearly independent set. Now, for each i = 1, 2, . . . , n,

Bai×Wm is a cycle basis of ai¤Wm. Since E(Bai¤Wm)∩ E(Baj¤Wm) = φ
whenever i 6= j, ∪n

i=1Bai¤Wm is linearly independent. Now any linear combi-
nation of ∪n

i=1Bai¤Wm contains an edge of ∪n
i=1E(ai¤(W−S)) which is not in

any cycle of (∪n−1
i=1 ∪m

j=2P(j)
aiai+1)∪(∪n−1

i=1 P(m)
ai+1ai)∪(∪m

j=2P(j)
ana1)∪P(m)

a1an where S
is the star graph which is obtained from Wm by deleting the edges of the cycle
v2v3 . . . vmv2, as a result (∪n

j=1∪m−1
i=1 P(j)

aiai+1)∪ (∪m−1
i=1 P(j)

ana1)∪ (∪m
j=2P(j)

ana1)∪
P(m)

a1an ∪ (∪n
i=1Bai¤Wm) is linearly independent. Now, (∪n−1

i=1 Saiai+1) ∪ Sana1

is a cycle basis of the planar graph Pn¤v1v2 which obtained by pasting all
the cycle of (∪n−1

i=1 Saiai+1) ∪ Sana1 , which are 4-cycles, at the common edges
of the successive cycles. Note that any linear combinations of cycles of
(∪n−1

i=1 Saiai+1)∪Sana1 contains an edge of E(Pn¤v1) which is not in any cy-
cle of (∪n

j=1∪m−1
i=1 P(j)

aiai+1)∪(∪m−1
i=1 P(j)

ana1)∪(∪m
j=2P(j)

ana1)∪P(m)
a1an∪(∪n

i=1Bai¤W ),

thus (∪n
j=1∪m−1

i=1 P(j)
aiai+1)∪(∪m−1

i=1 P(j)
ana1)∪(∪m

j=2P(j)
ana1)∪P(m)

a1an∪(∪n
i=1Bai¤W )∪

(∪n−1
i=1 Saiai+1)∪ Sana1 is linearly independent. Now By Lemma 3.19, Cn¤v1

is relevant. Thus, B∗(Cm nWn) is a linearly independent. Since
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|B∗(Cn nWm)| = (m− 1)(m− 2)(n− 1) + (n− 1)(m− 2) + (m− 1)n

+(n− 1) + (m− 2)(m− 1) + (m− 2) + 1 + 1

= m2n−mn + 1 = dim C(Cm nWn)

B∗(Cn nWm) is a cycle basis of Cn nWm. Since each cycle of B∗(Cm n
Wn) − {(∪n−1

i=1 Saiai+1) ∪ Sana1 ∪(Cn¤v1)} is of length three and since the
smallest cycle contains any edge of (ai, v1)(ai+1, v1), (a1, v1)(an, v1) is of
length 4 and by Lemma 3.19, we have that each cycle of B∗(Cn nWm) is
relevant in Cn nWm. Therefore, B∗(Cm nWn) is a minimum cycle basis
Cm n Wn. Since B∗(Pm n Wn) ⊂ B∗(Cm n Wn) and |B∗(Pm n Wn)| =
m2n −mn −m2 + 2m − 1 = dim C(Pm nWn), we have that B∗(Pm nWn)
is a cycle basis of Pm nWn. The proof is complete.

Corollary 4.9. l(PnnWm) = 3m2n− 3mn− 3m2 +6m− 3, l(CnnWm) =
3m2n− 3mn + n, λ(Pn nWm) = 4 and λ(Cn nWm) = n.
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