DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 24(1) (2004) 125-135
DOI: https://doi.org/10.7151/dmgt.1219

A NOTE ON TOTAL COLORINGS OF PLANAR GRAPHS WITHOUT 4-CYCLES

Ping Wang

Department of Mathematics, Statistics and Computer Science
St. Francis Xavier University, Antigonish, Nova Scotia, Canada
e-mail: pwang@stfx.ca

Jian-Liang Wu

School of Mathematics, Shandong University
Jinan, Shandong, 250100, P.R. China

Abstract

Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ ,k)∈ {(7,4),(6,5),(5,7),(4,14)}.

Keywords: total coloring, planar graph, list coloring, girth.

2000 Mathematics Subject Classification: 05C15.

References

[1] J.A. Bondy and U.S.R. Murty (Graph Theory with Applications, North-Holland, 1976).
[2] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180.
[3] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53-59, doi: 10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G.
[4] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152.
[5] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigarphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780.
[6] J.L. Gross and T.W. Tucker (Topological Graph Theory, John and Wiley & Sons, 1987).
[7] A.J.W. Hilton, Recent results on the total chromatic number, Discrete Math. 111 (1993) 323-331, doi: 10.1016/0012-365X(93)90167-R.
[8] T.R. Jensen and B. Toft (Graph Coloring Problems, John Wiley & Sons, 1995).
[9] Peter C.B. Lam, B.G. Xu, and J.Z. Liu, The 4-choosability of plane graphs without 4-cycles, J. Combin. Theory (B) 76 (1999) 117-126, doi: 10.1006/jctb.1998.1893.
[10] A. Sanchez-Arroyo, Determining the total coloring number is NP-hard, Discrete Math. 78 (1989) 315-319, doi: 10.1016/0012-365X(89)90187-8.
[11] H.P. Yap, Total colourings of graphs, Lecture Notes in Mathematics 1623 (Springer, 1996).

Received 26 February 2002
Revised 21 October 2003


Close