PDF
Discussiones Mathematicae Graph Theory 24(1) (2004) 125-135
DOI: https://doi.org/10.7151/dmgt.1219
A NOTE ON TOTAL COLORINGS OF PLANAR GRAPHS WITHOUT 4-CYCLES
Ping Wang
Department of Mathematics, Statistics and Computer Science |
Jian-Liang Wu
School of Mathematics, Shandong University |
Abstract
Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ ,k)∈ {(7,4),(6,5),(5,7),(4,14)}.Keywords: total coloring, planar graph, list coloring, girth.
2000 Mathematics Subject Classification: 05C15.
References
[1] | J.A. Bondy and U.S.R. Murty (Graph Theory with Applications, North-Holland, 1976). |
[2] | O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180. |
[3] | O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53-59, doi: 10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G. |
[4] | O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152. |
[5] | O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigarphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780. |
[6] | J.L. Gross and T.W. Tucker (Topological Graph Theory, John and Wiley & Sons, 1987). |
[7] | A.J.W. Hilton, Recent results on the total chromatic number, Discrete Math. 111 (1993) 323-331, doi: 10.1016/0012-365X(93)90167-R. |
[8] | T.R. Jensen and B. Toft (Graph Coloring Problems, John Wiley & Sons, 1995). |
[9] | Peter C.B. Lam, B.G. Xu, and J.Z. Liu, The 4-choosability of plane graphs without 4-cycles, J. Combin. Theory (B) 76 (1999) 117-126, doi: 10.1006/jctb.1998.1893. |
[10] | A. Sanchez-Arroyo, Determining the total coloring number is NP-hard, Discrete Math. 78 (1989) 315-319, doi: 10.1016/0012-365X(89)90187-8. |
[11] | H.P. Yap, Total colourings of graphs, Lecture Notes in Mathematics 1623 (Springer, 1996). |
Received 26 February 2002
Revised 21 October 2003