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Abstract

Let G be a 2-connected planar graph with maximum degree ∆ such
that G has no cycle of length from 4 to k, where k ≥ 4. Then the total
chromatic number of G is ∆+1 if (∆, k) ∈ {(7, 4), (6, 5), (5, 7), (4, 14)}.
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We consider finite simple graphs. Any undefined notation follows that of
Bondy and Murty [1]. We use V (G), E(G), δ(G) and ∆(G) to denote the
vertex set, the edge set, the minimum degree and the maximum degree of a
graph G respectively. Let d(v) denote the degree of vertex v. A k-vertex is
a vertex of degree k.

A total k-coloring of a graph G is a coloring of V (G) ∪ E(G) using k
colors such that no two adjacent or incident elements receive the same color.
The total chromatic number χT (G) is the smallest integer k such that G
has a total k-coloring. Behzad and Vizing (see page 86 in [8]) conjectured
independently that any graph G is totally (∆(G) + 2)-colorable in 1965.
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Various coloring techniques have been introduced in effort to prove this
conjecture for some special graph classes (see survey papers [7] and [11]). In
1989, Sanchez-Arroyo [10] proved that for any graph G it is NP-complete to
decide if χT (G) = ∆(G)+1. In 1997, Borodin et al [3] proved that a planar
graph G with maximum degree ∆ ≥ 11 has χT (G) = ∆(G)+1, and they also
obtained several related results by adding girth restrictions [4]. Note that
the added girth requirement in [4] prohibits the appearance of triangles. The
forbidden cycle or the girth restriction plays an important role in considering
list-coloring planar graphs. For example, Kratochv́ıl and Tuza showed that
every triangle-free planar graph is 4-choosable and Thomassen observed that
a planar graph is 3-choosable if the girth of the graph is at least 5 (both
results can be found in Section 2.13 of [8]). Recently, Lam, Xu and Liu [9]
proved that every C4-free planar graph is 4-choosable. We shall adopt a
similar approach and prove the following theorem. Note that triangles are
allowed in the graph G in our theorem.

Let a planar graph G be charged by an initial charge w(v) = d(v) − 4
if v ∈ V (G) and w(f) = r(f) − 4 if f ∈ F , where r(f) is the degree of the
face f . Euler’s formula implies that

∑
x∈V ∪F w(x) < 0. The discharging

method distributes the positive charge to neighbors so as to leave as little
positive charge remaining as possible. This leads to

∑
x∈V ∪F w(x) > 0. A

contradiction follows and this shows the unavoidability of a set of special
elements in G (see Claims 2, 3 and 4).

Theorem. Let G be a connected planar graph with maximum degree ∆ such
that G has no cycle of length from 4 to k, where k ≥ 4. If

(1) ∆ ≥ 7 and k ≥ 4 or
(2) ∆ ≥ 6 and k ≥ 5, or
(3) ∆ ≥ 5 and k ≥ 7, or
(4) ∆ ≥ 4 and k ≥ 14,

then χT (G) = ∆(G) + 1.

Lemma 1 [6]. Every region of a planar imbedding of a graph has a simple
cycle for its boundary if and only if G is 2-connected.

This lemma is equivalent to the assertion that no three edges incident with
any vertex v lie on the same face. It implies that each vertex v is incident
with d(v) faces. We shall use this fact often in the proof of the Theorem.
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An edge coloring of a graph G is a coloring of E(G) such that no two adjacent
edges receive the same color. A graph G is said to be edge-f -choosable if,
whenever we give lists Ae of f(e) colors to each edge e ∈ E(G), there exists
an edge coloring of G where each edge is colored with a color from its
own list.

Lemma 2 [5]. A bipartite graph G is edge-f -choosable where f(e) =
max{d(u), d(v)} for e = uv ∈ E(G).

Proof of Theorem. Let G = (V, E, F ) be a minimal counterexample to
any of (1) – (4) in the Theorem. Then

(a) G is 2-connected and

(b) any vertex is incident with at most bd(v)
2 c 3-faces, and

(c) G contains no even cycle v1v2 · · · v2tv1 such that d(v1) = d(v3) = · · · =
d(v2t−1) = 2, and

(d) G contains no edge uv with min{d(u), d(v)} ≤ b∆(G)
2 c and dG(u) +

dG(v) ≤ ∆(G) + 1.

(a) and (b) are obvious. The proofs of (c) and (d) can be found in [2] and
[5], respectively.

Let G2 be the subgraph induced by the edges incident with the 2-vertices
of G. Since ∆(G) ≥ 4 in all four cases in the Theorem, (d) implies that G
does not contain two adjacent 2-vertices. Hence, G2 does not contain any
odd cycle. It follows from (c) that G2 does not contain any even cycle.
Therefore, any component of G2 is a tree. For any component in G2 that
is a path of even length, one can easily find a set of edges saturating all
2-vertices. For any component that is not a path of even length, we can
select a vertex t with dG2(t) ≥ 3 as the root of the tree. We denote edges
of distance i from the root to be at level i + 1 where i = 0, 1, ..., d and d is
the depth of the tree. Since G does not contain two adjacent 2-vertices, the
distance from any leaf to the root is even. We can select all the edges at
even level to form a matching saturating all 2-vertices in this component.
Thus, there exists a matching M such that all 2-vertices in G2 are saturated.
If uv ∈ M and d(u) = 2, v is called the 2-master of u and u is called the
dependent of v. Each 2-vertex has a 2-master and each vertex of degree ∆
can be the 2-master of at most one 2-vertex.

Since G is a planar graph, by Euler’s formula, we have
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(E)
∑

v∈V

(d(v)− 4) +
∑

f∈F

(r(f)− 4) = −4(|V | − |E|+ |F |) = −8 < 0,

where r(f) is the degree of the face f , that is, the number of edges around
f . A k-face is a face of degree k. Now we define the initial charge function
w(x) for each x ∈ V ∪F . Let w(x) = d(x)− 4 if x ∈ V and w(x) = r(x)− 4
if x ∈ F . It follows from (E) that

∑
x∈V ∪F w(x) < 0.

We begin the proof of (1) in the Theorem. First we prove a claim
establishing a relation between the set of vertices of degree 3 or less and
the set of vertices of degree at least ∆− 1. We adopt the classic technique
used in proving Hall’s Matching Theorem (see page 72 in [1]). Let X be the
set of vertices of degree at most 3 and Y = ∪x∈XN(x). By (d), X is an
independent set of G. Let K be the induced bipartite subgraph of G with
partite sets X and Y .

Claim 1. If X 6= ∅, then G contains a bipartite subgraph B = (X, Y ) such
that dB(x) = 1 and dB(y) ≤ 2 whenever x ∈ X and y ∈ Y .

Proof of Claim 1. Let H = (X ′, Y ), where X ′ ⊆ X, be a maximum
bipartite subgraph such that dH(x) = 1 and dH(y) ≤ 2 whenever x ∈ X ′

and y ∈ Y . Note that there may be some isolated vertices in Y . Clearly,
H is not empty since there is at least one edge from X to Y . Suppose that
X\X ′ 6= ∅. Let v ∈ X\X ′. An alternating path, Pv, in G is a path whose
origin is v and edges are alternating between E(K) \ E(H) and E(H). By
the maximality of H, there exists no alternating path that will terminate
at a vertex v′ ∈ Y with dH(v′) ≤ 1. Let Z denote the set of of all vertices
connected to v by alternating paths. Set X ′′ = Z ∩X ′ and Y ′′ = Z ∩Y (see
Figure 1).

Clearly, Y ′′ ⊆ ∪x∈X′′N(x). Suppose ∪x∈X′′N(x) 6⊆ Y ′′. It follows that
there exists a vertex x ∈ X ′′ such that xy ∈ E(G) and y 6∈ Y ′′. This implies
that an alternating path Pv terminates at a vertex y ∈ Y , a contradiction.
Hence, Y ′′ = ∪x∈X′′N(x).

Now we show that dH(y) ≥ 2 for any y ∈ Y ′′. Suppose, on the contrary,
there exists a vertex yi ∈ Y ′′ where vy1x1...xi−1yi is an alternating path such
that dH(yi) = 1. Let H ′ = H − {y1x1, ..., yi−1xi−1}+ {vy1, x1y2, ..., yixi−1}
if i ≥ 2 and let H ′ = H + {vy1} if i = 1. It follows that |E(H ′)| > |E(H)|,
a contradiction to H being maximum.
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Figure 1. Subgraph F

Let F = (X ′′, Y ′′). It follows that dF (y) ≥ dH(y) + 1 ≥ 3 for any y ∈ Y ′′.
Note that dG(x) = dF (x) ≤ 3 for any x ∈ X ′′.

Now G −X ′′ has a total (∆ + 1)-coloring by the minimality of G. By
Lemma 2, we can color all edges in F using the same set of colors by choosing
the colors unused on y ∈ Y ′′. Since the maximum degree in X ′′ is 3, all
vertices in X ′′ can be easily colored by (∆+1) colors. Therefore, G has a total
(∆ + 1)-coloring, a contradiction with the fact that G is a counterexample.
This implies X = X ′, and which in turn, proves Claim 1.

We call y the 3-master of x if xy ∈ B and x ∈ X. It follows from this claim
that each vertex of degree at most 3 has a 3-master. Each vertex of degree
at least ∆− 1 can be a 3-master of at most two vertices.

Claim 2. If ∆ ≥ 7, then G does not contain a 3-face uvw such that
d(u) = d(v) = 4.

Proof of Claim 2. Suppose it does contain such a 3-face. Let G′ =
G − uv. By the minimality of G, G′ has a total (∆ + 1)-coloring ϕ. Since
dG′(u) = dG′(v) = 3 and ∆ ≥ 7, we may assume that ϕ(u) 6= ϕ(v). Let C be
the set of colors used to color edges adjacent to uv. If ϕ(w) 6∈ C, then color
uv with ϕ(w). Otherwise, without loss of generality, we may assume that
an edge e incident with u is colored with ϕ(w). Then we erase the color on
u. It follows that at least one color is available for uv, and then we re-color
u. This is possible because d(u) = 4 and both e and w share the same color.
Now, G has a total coloring with (∆ + 1) colors, a contradiction with the
fact that G is a counterexample.
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Claim 2 and (d) imply that every 3-face is incident with at least two vertices
of degree at least 5. To prove (1), we are ready to construct a new charge
w∗(x) on G as follows:

R11: Each r(≥ 5)-face gives 1− 4
r to its incident vertices.

R12: Each 2-vertex receives 3
5 from its 3-master, and receives 16

15 from its
2-master if it is incident with a 3-face and receives 1 from its 2-master
otherwise.

R13: Each 3-vertex receives 8
15 from its 3-master. In addition, if v is incident

with a 3-face f , then each 3-vertex v receives 1
15 from u where u is a

neighbor of v but not incident with f .
R14: Each 3-face receives 1

2 from its incident vertices of degree at least 5.

By (d), d(v) = ∆ ≥ 7 if a vertex v is the 2-master of some vertex, d(v) ≥
∆ − 1 ≥ 6 if v is the 3-master of some vertices, and d(u) ≥ 6 if a vertex
u gives 1

15 via R13. Note that a vertex can be the 3-master of most two
vertices and, in turn, it may give at most 2 × max{3

5 , 8
15} = 6

5 . Let f
be a face of G. Clearly, w∗(f) = 0 if r(f) ≥ 5. By Claim 2, each 3-
face f is incident with at least two vertices of degree at least 5. Hence,
w∗(f) ≥ w(f)+1 = 0. Let v be an arbitrary vertex of G. First, we consider
the case of d(v) = 2. It will receive 3

5 from its 3-master. By Lemma 1,
v is incident with two faces. If v is incident with a 3-face, then the other
incident face of v must have degree at least 6 since G is a C4-free graph.
This implies that v receives at least 1

3 from the face of degree ≥ 6. If v is
not incident with a 3-face, then v receives at least 2 × 1

5 from its incident
faces. So w∗(v) ≥ w(v)+min{3

5 + 16
15 + 1

3 , 3
5 +1+ 2

5} = 0. Consider d(v) = 3.
If it is incident with a 3-face, then the other two vertices on the same face
must be of degree at least 5 and this implies that v receives at least 2

5 from
its incident faces. If v is not incident with a 3-face, then it must be incident
with three r-faces where r ≥ 5. It follows that it receives at least 3

5 from
its incident faces. Hence, w∗(v) ≥ w(v) + min{ 8

15 + 1
15 + 2

5 , 8
15 + 3

5} = 0.
If d(v) = 4, then it is incident with at most two 3-faces and its other two
incident faces must be of degree ≥ 5. Hence, w∗(v) ≥ w(v) + 2

5 > 0. If
d(v) = 5, then v is incident with at least three r-faces where r ≥ 5 and at
most two 3-faces. Hence, w∗(v) ≥ w(v) + 3

5 − 2 × 1
2 > 0. If d(v) = 6, it

can be 3-master of at most two vertices. Consider any two neighbors of v,
say u1 and u2. If they form a 3-face, then v gives 1

2 to the 3-face. If each
of them is a 3-vertex on some 3-face, then v gives 2 × 1

15 . However, these
two cases can not happen simultaneously; that is, vu1u2 is a 3-face and u1,
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u2 have another common neighbor w 6= v, such that either d(u1) = 3 or
d(u2) = 3 since G is C4-free graph. In the evaluation of the lower bound
of w∗(v), it suffices to consider the case when v gives 3× 1

15 to its incident
3-faces. It follows that w∗(v) ≥ w(v) + 3

5 − 2 × 8
15 − 3 × 1

2 > 0. Now
consider d(v) = 7. Suppose v is a 2-master of a vertex u. If u and v are
incident with the same 3-face, then v receives at least 3× 1

5 + (1− 4
6) from

its incident faces and gives 16
15 to u. Otherwise v receives at least 4× 1

5 from
its incident faces and gives 1 to u. Vertex v may be incident with at most
three 3-faces and the remaining neighbor of v not incident with any three
3-faces may be a 3-vertex and in another 3-face, in turn, v may give 1

15 to the
3-vertex. Vertex v may also be the 3-master of two other vertices. Hence,
w∗(v) ≥ w(v)+min{3× 1

5+ 1
3− 16

15 , 4
5−1}−(3× 1

2+ 1
15+2× 3

5) > 0. In general, if
d(v) ≥ 8, then w∗(v) ≥ w(v)+min{bd(v)

2 c×1
5+1

3−16
15 , dd(v)

2 e×1
5−1}−(bd(v)

2 c×
1
2 + 1

15 + 2 × 3
5) > 0. It follows that

∑
x∈V ∪F w(x) =

∑
x∈V ∪F w∗(x) ≥ 0, a

contradiction with (E). This completes the proof of (1).
Note that (1) implies that (2) is true if ∆ ≥ 7. Hence, it is sufficient to

prove (2) by assuming ∆ = 6. Similarly, we may assume that ∆ = 5 in the
proof of (3) and ∆ = 4 in the proof of (4).

Claim 3. If ∆ ≥ 5, then G does not contain a 3-face uvw such that
d(u) = d(v) = 3.

The proof of Claim 3, which we omit, is the same as Claim 2. Claim 3
implies that each 3-face is incident with at least two vertices of degree at
least 4. To prove (2), we construct the new charge w∗(x) on G as follows:

R21: Each r(≥ 6)-face gives 1− 4
r to its incident vertices.

R22: Each 2-vertex receives 11
7 from its 2-master if it is incident with a

3-face and receives 4
3 from its 2-master otherwise.

R23: Each 3-vertex v receives 1/3 from u if v is incident with a 3-face f and
u is a neighbor of v but not incident with f .

R24: Each 3-face receives 1
2 from its incident vertex v if d(v) ≥ 5 and

receives 1
3 if d(v) = 4.

Clearly, we have w∗(f) ≥ 0 for any face f . Let v be an arbitrary vertex of G.
Consider the case of d(v) = 2. If it is incident with a 3-face, then its other
incident face must have degree at least 7 since G is a C4-free and C5-free
graph. It follows that v receives at least 1 − 4

7 = 3
7 from the incident face

and 11
7 from its 2-master; that is, w∗(v) ≥ w(v) + 3

7 + 11
7 = 0. Otherwise if
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v is not incident with any 3-face, then it receives at least 2 × (1 − 4
6) = 2

3
from its two incident faces of degree at least 6 and 4

3 from its 2-master.
Hence, w∗(v) ≥ w(v) + 2

3 + 4
3 = 0. Suppose d(v) = 3. If v is incident with a

3-face, then v receives at least 2
3 from its two incident faces and 1

3 from its
3-master not lying on the same 3-face. Otherwise if v is not incident with
any 3-face, then v receives at least 1 from its three incident faces. Hence,
w∗(v) ≥ w(v) + 1 = 0. Note that v gives either 1

3 if d(v) = 4 or 1
2 if

d(v) ≥ 5 to an incident 3-face, say vuw where u,w ∈ N(v), or gives 1
3 to

u and 1
3 to w by R23 but v will then receive at least 1 − 4

6 = 1
3 from the

face whose partial boundary contains u, v, w sequentially if uw /∈ E(G). In
the evaluation of the lower bound of w∗(v), it suffices to consider the case
when v gives 1

3 or 1
2 to its incident 3-faces. If d(v) = 4, then it receives at

least 2
3 from its two incident faces of degree ≥ 6 and gives at most 2

3 to its
incident 3-faces since any 4-vertex is incident with at most two 3-faces. It
follows that w∗(v) ≥ w(v) + 2

3 − 2
3 = 0. If d(v) = 5, then there are five

faces incident with v by Lemma 1. It follows that v is incident with at
most two 3-faces and at least three r-faces (r ≥ 6). If four neighbors of v
form two 3-faces and a 3-face is pending on the remaining neighbor of v,
then v discharges at most 2 × 1

2 + 1
3 via R23. This implies that w∗(v) ≥

w(v) + 3× 1
3 − (2× 1

2 + 1
3) > 0. Suppose d(v) = 6. It follows that v can be

the 2-master of some vertex u. In this case, either u is on 3-face vuu′ (and
it follows that v gives 11

7 + 1
2), or v is the 2-master of u and 3-master of u′

where v and u are not on the same 3-face, and it follows that v gives 4
3 + 1

3 .
To find a low bound for w∗(v), it suffices to consider the first case when v
is the 2-master of u and vuu′ forms a 3-face. If v is the 3-master of some
3-vertex u1, then v gives at most 2× 1

3 to its dependents and 1
2 to another

3-face. In this case, v receives 3
7 + 3× 1

3 from its incident faces. If v is not
a 3-master of any 3-vertex, then v gives at most 2 × 1

2 to its two incident
3-faces. In this case, v receives 3

7 + 2 × 1
3 from its incident faces. Hence,

w∗(v) ≥ w(v)+min{3
7+1−(11

7 +1
2+2

3+1
2), 3

7+2
3−11

7 −1
2−1} = 2−83

42 = 1
42 > 0.

It follows that
∑

x∈V ∪F w(x) =
∑

x∈V ∪F w∗(x) > 0, a contradiction. This
completes the proof of (2).

To prove (3), we construct a new charge w∗(x) on G as follows:

R31: Each r(≥ 8)-face gives 1− 4
r to its incident vertices.

R32: Each 2-vertex receives 13
9 from its 2-master if it is incident with a

3-face and receives 1 from its 2-master otherwise.
R33: Each 3-face receives 1

2 from its incident vertices of degree at least 4.
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We also have w∗(f) ≥ 0 for any face f . Let v be an arbitrary vertex of G.
If d(v) = 2, then w∗(v) ≥ w(v) + min{13

9 + 5
9 , 2 × 1

2 + 1} = 0. If d(v) = 3,
then v is incident with at most one 3-face and at least two faces of degree
≥ 8. It follows that v receives at least 2 × 1

2 = 1 from its incident faces,
and in turn, w∗(v) ≥ w(v) + 1 = 0. If d(v) = 4, then it receives at least
2× 1

2 = 1 from its incident faces and gives at most 2× 1
2 = 1 to its incident

3-faces, that is, w∗(v) ≥ w(v) + 1 − 1 = 0. Suppose d(v) = 5. If v is the
2-master of a 2-vertex u, and u is incident with a 3-face, then v receives
at least 3 × 1

2 from its incident faces and gives at most 13
9 + 2 × 1

2 to its
dependent and 3-faces. Otherwise v receives at least 3× 1

2 from its incident
faces and gives at most 1 + 2 × 1

2 to its dependent and 3-faces. It follows
that w∗(v) ≥ w(v) + min{3

2 − 13
9 − 1, 3

2 − 2} = 1
18 > 0. This implies that∑

x∈V ∪F w(x) =
∑

x∈V ∪F w∗(x) > 0, a contradiction. This completes the
proof of (3).

We will prove the following claim before we prove (4).

Claim 4. If ∆ = 4, then G contains no 4-vertex z where z is incident with
two 3-faces zux, zvy and d(x) = d(y) = 2.

Proof of Claim 4. Suppose, on the contrary, such vertex z does exist.
We can totally color the edges and vertices of G−{xz, yz} with a set of five
colors, say C, by the minimality of G. First, we erase the colors assigned on
x and y. Let c1, c2, c3, c4, c5 be colors used on xu, zu, zv, yv, z, respectively.

We will show that c1 6= c4. Otherwise if c1 = c4, we claim that c1 6= c5.
If c1 = c5, then we can color xz by α ∈ C\{c1, c2, c3} and yz by a color in
C\{c1, c2, c3, α}. It easy to see that x and y can be colored because they
are only adjacent to two vertices and incident with two edges. This implies
that G can be totally colored by five colors, a contradiction. Now we show
it is impossible that c1 = c4 and c1 6= c5. If c1 = c4, then we can interchange
colors c3 and c1 at v and color zx by c3. It follows that we can also color
zy by a color in C\{c1, c2, c3, c5}. Similarly we can color vertices x and y
since they are both vertices of degree 2. This implies that G can be totally
colored by five colors, a contradiction.

Similarly, we can show that c1 6= c3 and c1 6= c5. Since c1 /∈ {c2, c3, c4, c5},
c1 can be assigned to zy and there is a color available for zx, x and y. This
implies that G can be totally colored by five colors, a contradiction.

To prove (4), construct a new charge w∗(x) on G as follows:

R41: Each r(≥ 15)-face gives 1− 4
r to its incident vertices.
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R42: Each 2-vertex receives 19
24 from its neighbors if it is incident with a

3-face and receives 8
15 from its 2-master otherwise.

R43: Each 3-face receives 1
3 from its incident vertices.

It is obvious that w∗(f) = 0 for any face f . Let v be an arbitrary vertex
of G. First consider the case of d(v) = 2. If it is incident with a 3-face,
then its other incident face f must have degree at least 16. From (d), any
neighbor of v should be of degree at least (∆ + 2) − 2 = 4. Hence, they
can not be 2-vertices. It follows that v receives at least 1 − 4

16 = 3
4 from

f and 2 × 19
24 = 19

12 from its neighbors, and gives 1
3 to its incident 3-face.

Otherwise v receives at least 2 × 11
15 = 22

15 from its incident faces and 8
15

from its 2-master. Hence, w∗(v) ≥ w(v) + min{3
4 + 19

12 − 1
3 , 22

15 + 8
15} = 0.

Now consider the case of d(v) = 3. v receives at least 2 × 11
15 = 22

15 from its
incident faces. Hence, w∗(v) = w(v) + 22

15 − 1
3 = 2

15 > 0. If d(v) = 4 and
it is incident with two 3-faces, then v is adjacent to at most one 2-vertex
by Claim 4. It follows that w∗(v) ≥ w(v) + 22

15 − (2
3 + 19

24) = 1
120 > 0.

Otherwise it receives at least 3 × 11
15 from its incident faces, and gives at

most 1
3 to its incident 3-face and 19

24 + 8
15 to its adjacent 2-vertices. It follows

that w∗(v) ≥ w(v) + 33
15 − (1

3 + 19
24 + 8

15) = 13
24 > 0. This implies that∑

x∈V ∪F w(x) =
∑

x∈V ∪F w∗(x) > 0, a contradiction. This completes the
proof of (4).

In the proof of the Theorem, we showed that
∑

x∈V ∪F w(x) =
∑

x∈V ∪F w∗(x)
> 0. It implies the following corollary.

Corollary 1. Let G be a graph with maximum degree ∆ embedded in a
surface of nonnegative characteristic, and G has no cycle of length from 4 to
k, where k ≥ 4. Then χT (G) = ∆+1 if (∆, k) ∈ {(7, 4), (6, 5), (5, 7), (4, 14)}.
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