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Abstract

Let G be a 2-connected planar graph with maximum degree A such
that G has no cycle of length from 4 to k, where k > 4. Then the total
chromatic number of G is A+1if (A, k) € {(7,4),(6,5), (5,7), (4,14)}.
Keywords: total coloring, planar graph, list coloring, girth.

2000 Mathematics Subject Classification: 05C15.

We consider finite simple graphs. Any undefined notation follows that of
Bondy and Murty [1]. We use V(G), E(G), §(G) and A(G) to denote the
vertex set, the edge set, the minimum degree and the maximum degree of a
graph G respectively. Let d(v) denote the degree of vertex v. A k-vertex is

a vertex of degree k.

A total k-coloring of a graph G is a coloring of V(G) U E(G) using k
colors such that no two adjacent or incident elements receive the same color.
The total chromatic number xp(G) is the smallest integer k such that G
has a total k-coloring. Behzad and Vizing (see page 86 in [8]) conjectured
independently that any graph G is totally (A(G) + 2)-colorable in 1965.
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Various coloring techniques have been introduced in effort to prove this
conjecture for some special graph classes (see survey papers [7] and [11]). In
1989, Sanchez-Arroyo [10] proved that for any graph G it is NP-complete to
decide if x7(G) = A(G) + 1. In 1997, Borodin et al [3] proved that a planar
graph G with maximum degree A > 11 has x7(G) = A(G)+1, and they also
obtained several related results by adding girth restrictions [4]. Note that
the added girth requirement in [4] prohibits the appearance of triangles. The
forbidden cycle or the girth restriction plays an important role in considering
list-coloring planar graphs. For example, Kratochvil and Tuza showed that
every triangle-free planar graph is 4-choosable and Thomassen observed that
a planar graph is 3-choosable if the girth of the graph is at least 5 (both
results can be found in Section 2.13 of [8]). Recently, Lam, Xu and Liu [9]
proved that every Cy-free planar graph is 4-choosable. We shall adopt a
similar approach and prove the following theorem. Note that triangles are
allowed in the graph G in our theorem.

Let a planar graph G be charged by an initial charge w(v) = d(v) — 4
if v e V(G) and w(f) =r(f) —4if f € F, where r(f) is the degree of the
face f. Euler’s formula implies that >y pw(z) < 0. The discharging
method distributes the positive charge to neighbors so as to leave as little
positive charge remaining as possible. This leads to > cyupw(z) > 0. A
contradiction follows and this shows the unavoidability of a set of special
elements in G (see Claims 2, 3 and 4).

Theorem. Let G be a connected planar graph with mazximum degree A such
that G has no cycle of length from 4 to k, where k > 4. If

(1) A>T and k>4 or

(2) A>6and k > 5, or

(3) A>5andk>1, or

(4) A >4 and k > 14,

then xr(G) = A(G) + 1.

Lemma 1 [6]. Every region of a planar imbedding of a graph has a simple
cycle for its boundary if and only if G is 2-connected.

This lemma is equivalent to the assertion that no three edges incident with
any vertex v lie on the same face. It implies that each vertex v is incident
with d(v) faces. We shall use this fact often in the proof of the Theorem.
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An edge coloring of a graph G is a coloring of F(G) such that no two adjacent
edges receive the same color. A graph G is said to be edge- f-choosable if,
whenever we give lists A, of f(e) colors to each edge e € E(G), there exists
an edge coloring of G where each edge is colored with a color from its
own list.

Lemma 2 [5|. A bipartite graph G is edge-f-choosable where f(e) =
max{d(u),d(v)} for e =uv € E(G).

Proof of Theorem. Let G = (V, E, F) be a minimal counterexample to
any of (1) — (4) in the Theorem. Then

(a) G is 2-connected and

(b) any vertex is incident with at most L@J 3-faces, and

(c) G contains no even cycle vivg - - - vo;v1 such that d(vy) =d(vs) =--- =
d(vzt—1) = 2, and

(d) G contains no edge wv with min{d(u),d(v)} < L%J and dg(u) +
dg(v) < A(G) + 1.

(a) and (b) are obvious. The proofs of (c) and (d) can be found in [2] and
[5], respectively.

Let G4 be the subgraph induced by the edges incident with the 2-vertices
of G. Since A(G) > 4 in all four cases in the Theorem, (d) implies that G
does not contain two adjacent 2-vertices. Hence, G2 does not contain any
odd cycle. It follows from (c) that G2 does not contain any even cycle.
Therefore, any component of Go is a tree. For any component in G that
is a path of even length, one can easily find a set of edges saturating all
2-vertices. For any component that is not a path of even length, we can
select a vertex ¢ with dg,(t) > 3 as the root of the tree. We denote edges
of distance i from the root to be at level ¢ + 1 where i = 0,1,....,d and d is
the depth of the tree. Since G does not contain two adjacent 2-vertices, the
distance from any leaf to the root is even. We can select all the edges at
even level to form a matching saturating all 2-vertices in this component.
Thus, there exists a matching M such that all 2-vertices in G5 are saturated.
If wv € M and d(u) = 2, v is called the 2-master of u and u is called the
dependent of v. Each 2-vertex has a 2-master and each vertex of degree A
can be the 2-master of at most one 2-vertex.

Since G is a planar graph, by Euler’s formula, we have
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(B) > () =4+ (r(f) —4) = —4(V| - |E| + |F]) = -8 <0,

veV feF

where 7(f) is the degree of the face f, that is, the number of edges around
f- A k-face is a face of degree k. Now we define the initial charge function
w(z) for each x € VUF. Let w(z) =d(z)—4if z € V and w(x) =r(z) — 4
if z € F. It follows from (E) that >, cypw(z) <O0.

We begin the proof of (1) in the Theorem. First we prove a claim
establishing a relation between the set of vertices of degree 3 or less and
the set of vertices of degree at least A — 1. We adopt the classic technique
used in proving Hall’s Matching Theorem (see page 72 in [1]). Let X be the
set of vertices of degree at most 3 and ¥ = UzexN(z). By (d), X is an
independent set of G. Let K be the induced bipartite subgraph of G with
partite sets X and Y.

Claim 1. If X # (), then G contains a bipartite subgraph B = (X,Y") such
that dp(x) =1 and dp(y) < 2 whenever z € X and y € Y.

Proof of Claim 1. Let H = (X',Y), where X’ C X, be a maximum
bipartite subgraph such that dy(z) = 1 and dg(y) < 2 whenever z € X’
and y € Y. Note that there may be some isolated vertices in Y. Clearly,
H is not empty since there is at least one edge from X to Y. Suppose that
X\X" #£ (. Let v € X\X'. An alternating path, P,, in G is a path whose
origin is v and edges are alternating between E(K) \ E(H) and E(H). By
the maximality of H, there exists no alternating path that will terminate
at a vertex v’ € Y with dy(v') < 1. Let Z denote the set of of all vertices
connected to v by alternating paths. Set X" =ZNX' and Y =2ZNY (see
Figure 1).

Clearly, Y C Uzex#N(x). Suppose Ugex»N(z) € Y". Tt follows that
there exists a vertex x € X" such that xy € F(G) and y ¢ Y”. This implies
that an alternating path P, terminates at a vertex y € Y, a contradiction.
Hence, Y = Uzexn N(z).

Now we show that dg(y) > 2 for any y € Y”. Suppose, on the contrary,
there exists a vertex y; € Y where vy x1...2;_1y; is an alternating path such
that dH(yz) =1. Let H = H — {ylxl, e yi,1$i,1} + {Uyl, T1Y2,y -.vy yil‘ifl}
if i >2and let H' = H + {vy, } if i = 1. Tt follows that |E(H')| > |E(H)],
a contradiction to H being maximum.
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Figure 1. Subgraph F'

Let FF = (X", Y"). Tt follows that dp(y) > dug(y) +1 > 3 for any y € Y.
Note that dg(z) = dp(z) < 3 for any z € X”.

Now G — X" has a total (A + 1)-coloring by the minimality of G. By
Lemma 2, we can color all edges in F' using the same set of colors by choosing
the colors unused on y € Y”. Since the maximum degree in X" is 3, all
vertices in X” can be easily colored by (A+1) colors. Therefore, G has a total
(A + 1)-coloring, a contradiction with the fact that G is a counterexample.
This implies X = X’ and which in turn, proves Claim 1. |

We call y the 3-master of x if zy € B and x € X. It follows from this claim
that each vertex of degree at most 3 has a 3-master. Each vertex of degree
at least A — 1 can be a 3-master of at most two vertices.

Claim 2. If A > 7, then G does not contain a 3-face uvw such that
d(u) =d(v) = 4.

Proof of Claim 2. Suppose it does contain such a 3-face. Let G' =
G — wv. By the minimality of G, G’ has a total (A + 1)-coloring ¢. Since
dgr(u) = dg(v) = 3 and A > 7, we may assume that p(u) # ¢(v). Let C be
the set of colors used to color edges adjacent to uv. If p(w) & C, then color
wv with p(w). Otherwise, without loss of generality, we may assume that
an edge e incident with u is colored with ¢(w). Then we erase the color on
u. It follows that at least one color is available for uv, and then we re-color
w. This is possible because d(u) = 4 and both e and w share the same color.
Now, G has a total coloring with (A + 1) colors, a contradiction with the
fact that G is a counterexample. |
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Claim 2 and (d) imply that every 3-face is incident with at least two vertices
of degree at least 5. To prove (1), we are ready to construct a new charge
w*(z) on G as follows:

R11: Each r(> 5)-face gives 1 — 2 to its incident vertices.

R12: Each 2-vertex receives % from its 3-master, and receives % from its
2-master if it is incident with a 3-face and receives 1 from its 2-master

otherwise.

R13: Each 3-vertex receives 1% from its 3-master. In addition, if v is incident
with a 3-face f, then each 3-vertex v receives 1—15 from u where u is a
neighbor of v but not incident with f.

R14: Each 3-face receives % from its incident vertices of degree at least 5.

By (d), d(v) = A > 7 if a vertex v is the 2-master of some vertex, d(v) >
A —1 > 6 if v is the 3-master of some vertices, and d(u) > 6 if a vertex
u gives 1—15 via R13. Note that a vertex can be the 3-master of most two
vertices and, in turn, it may give at most 2 X max %,% = g. Let f
be a face of G. Clearly, w*(f) = 0 if r(f) > 5. By Claim 2, each 3-
face f is incident with at least two vertices of degree at least 5. Hence,
w*(f) > w(f)+1=0. Let v be an arbitrary vertex of G. First, we consider
the case of d(v) = 2. It will receive 2 from its 3-master. By Lemma 1,
v is incident with two faces. If v is incident with a 3-face, then the other
incident face of v must have degree at least 6 since G is a Cy-free graph.
This implies that v receives at least % from the face of degree > 6. If v is
not incident with a 3-face, then v receives at least 2 x % from its incident
faces. So w*(v) > w(v) +min{% + %g + %, % +1+ %} = 0. Consider d(v) = 3.
If it is incident with a 3-face, then the other two vertices on the same face
must be of degree at least 5 and this implies that v receives at least % from
its incident faces. If v is not incident with a 3-face, then it must be incident
with three r-faces where r > 5. It follows that it receives at least % from
its incident faces. Hence, w*(v) > w(v) + min{& + = + 2, £ + 3} = 0.
If d(v) = 4, then it is incident with at most two 3-faces and its other two
incident faces must be of degree > 5. Hence, w*(v) > w(v) + 2 > 0. If
d(v) = 5, then v is incident with at least three r-faces where » > 5 and at
most two 3-faces. Hence, w*(v) > w(v) + % —2x1>0. Ifd(v) =6, it
can be 3-master of at most two vertices. Consider any two neighbors of v,
say u1 and uo. If they form a 3-face, then v gives % to the 3-face. If each
of them is a 3-vertex on some 3-face, then v gives 2 x %5 However, these
two cases can not happen simultaneously; that is, vuqus is a 3-face and wuq,
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ug have another common neighbor w # v, such that either d(u;) = 3 or
d(uz) = 3 since G is Cy-free graph. In the evaluation of the lower bound
of w*(v), it suffices to consider the case when v gives 3 x i to its incident

3-faces. It follows that w*(v) > w(v) + 2 — 2 X = — 3 >< 3 > 0. Now
consider d(v) = 7. Suppose v is a Z-master of a Vertex u If v and v are
incident with the same 3- face then v receives at least 3 x = + (1 — 7) from

its incident faces and gives 15 6 to u. Otherwise v receives at least 4% 5 L from
its incident faces and gives 1 to u. Vertex v may be incident with at most
three 3-faces and the remaining neighbor of v not incident with any three
3-faces may be a 3-vertex and in another 3-face, in turn, v may give 7 1 to the
3-vertex. Vertex v may also be the 3-master of two other vertices. Hence
w*(v) > w(v)+min{3x t+1-15, %— } (3x3+1:+2x2) > 0. In general, if
d(v) 2 8, then w*(v) = wlv)-+min{| | x3+5— 2, (‘“;H —13—(1 %2 %
3+ +2x2)>0. It follows that ervupw( x) = Zmequw () >0, a
contradiction Wlth (E). This completes the proof of (1).

Note that (1) implies that (2) is true if A > 7. Hence, it is sufficient to
prove (2) by assuming A = 6. Similarly, we may assume that A =5 in the
proof of (3) and A =4 in the proof of (4).

Claim 3. If A > 5, then G does not contain a 3-face uvw such that

d(u) =d(v) =

The proof of Claim 3, which we omit, is the same as Claim 2. Claim 3
implies that each 3-face is incident with at least two vertices of degree at
least 4. To prove (2), we construct the new charge w*(z) on G as follows:

R21: Each r(> 6)-face gives 1 — # to its incident vertices.

R22: Each 2-vertex receives 1—71 from its 2-master if it is incident with a

3-face and receives % from its 2-master otherwise.

R23: Each 3-vertex v receives 1/3 from w if v is incident with a 3-face f and
u is a neighbor of v but not incident with f.

R24: Each 3-face receives % from its incident vertex v if d(v) > 5 and

receives 3 if d(v) = 4.

Clearly, we have w*(f) > 0 for any face f. Let v be an arbitrary vertex of G.
Consider the case of d(v) = 2. If it is incident with a 3-face, then its other
incident face must have degree at least 7 since G is a Cy-free and Cj-free
graph. It follows that v receives at least 1 — % = 2 from the incident face
and & from its 2-master; that is, w*(v) > w(v) + g + & = 0. Otherwise if
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v is not incident with any 3-face, then it receives at least 2 x (1 — %) = %

from its two incident faces of degree at least 6 and % from its 2-master.
Hence, w*(v) > w(v) + % 4+ 3 = 0. Suppose d(v) = 3. If v is incident with a
3-face, then v receives at least % from its two incident faces and % from its
3-master not lying on the same 3-face. Otherwise if v is not incident with
any 3-face, then v receives at least 1 from its three incident faces. Hence,
w*(v) > w(v) + 1 = 0. Note that v gives either  if d(v) = 4 or % if
d(v) > 5 to an incident 3-face, say vuw where u,w € N(v), or gives % to
u and % to w by R23 but v will then receive at least 1 — % = % from the
face whose partial boundary contains u, v, w sequentially if vw ¢ E(G). In
the evaluation of the lower bound of w*(v), it suffices to consider the case
when v gives % or % to its incident 3-faces. If d(v) = 4, then it receives at
least % from its two incident faces of degree > 6 and gives at most % to its
incident 3-faces since any 4-vertex is incident with at most two 3-faces. It
follows that w*(v) > w(v) + 2 — 2 = 0. If d(v) = 5, then there are five
faces incident with v by Lemma 1. It follows that v is incident with at
most two 3-faces and at least three r-faces (r > 6). If four neighbors of v
form two 3-faces and a 3-face is pending on the remaining neighbor of v,
then v discharges at most 2 x 3 + % via R23. This implies that w*(v) >
w(v) +3x 3 — (2 x 5+ %) > 0. Suppose d(v) = 6. It follows that v can be
the 2-master of some vertex w. In this case, either u is on 3-face vuu' (and
it follows that v gives % + %), or v is the 2-master of v and 3-master of v’
where v and u are not on the same 3-face, and it follows that v gives % + %
To find a low bound for w*(v), it suffices to consider the first case when v
is the 2-master of u and vuu' forms a 3-face. If v is the 3-master of some
3-vertex w1, then v gives at most 2 x % to its dependents and % to another
3-face. In this case, v receives % + 3 x % from its incident faces. If v is not
a 3-master of any 3-vertex, then v gives at most 2 x % to its two incident
3-faces. In this case, v receives % + 2 x % from its incident faces. Hence,
w*(v) > w)4min{2+1-(F+5+3+3),242-L 11} =2-8 =1 >0
It follows that > cy pw(z) = 3 evur w*(z) > 0, a contradiction. This
completes the proof of (2).

To prove (3), we construct a new charge w*(x) on G as follows:

R31: Each r(> 8)-face gives 1 — % to its incident vertices.

R32: Each 2-vertex receives %3 from its 2-master if it is incident with a

3-face and receives 1 from its 2-master otherwise.

R33: Each 3-face receives % from its incident vertices of degree at least 4.
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We also have w*(f) > 0 for any face f. Let v be an arbitrary vertex of G.
If d(v) = 2, then w*(v) > w(v) + min{ + 2.2 x 3 +1} = 0. If d(v) = 3,
then v is incident with at most one 3-face and at least two faces of degree
> 8. It follows that v receives at least 2 x % = 1 from its incident faces,
and in turn, w*(v) > w(v) + 1 = 0. If d(v) = 4, then it receives at least
2 X % =1 from its incident faces and gives at most 2 x % =1 to its incident
3-faces, that is, w*(v) > w(v) + 1 —1 = 0. Suppose d(v) = 5. If v is the
2-master of a 2-vertex u, and wu is incident with a 3-face, then v receives
at least 3 x % from its incident faces and gives at most 1@3 + 2 X % to its
dependent and 3-faces. Otherwise v receives at least 3 x % from its incident
faces and gives at most 1 + 2 X % to its dependent and 3-faces. It follows
that w*(v) > w(v) + min{3 — ¥ — 1,3 — 2} = &% > 0. This implies that
Yowevurw(x) = Y cyurpw*(z) > 0, a contradiction. This completes the
proof of (3).
We will prove the following claim before we prove (4).

Claim 4. If A =4, then G contains no 4-vertex z where z is incident with
two 3-faces zux, zvy and d(x) = d(y) = 2.

Proof of Claim 4. Suppose, on the contrary, such vertex z does exist.
We can totally color the edges and vertices of G — {zz,yz} with a set of five
colors, say C', by the minimality of G. First, we erase the colors assigned on
x and y. Let c1, ¢, c3,cq, c5 be colors used on xu, zu, 2v, yv, z, respectively.

We will show that ¢y # ¢4. Otherwise if ¢ = ¢4, we claim that ¢; # cs.
If ¢ = ¢s5, then we can color zz by a € C\{c1,¢2,c3} and yz by a color in
C\{c1,c2,c3,a}. It easy to see that x and y can be colored because they
are only adjacent to two vertices and incident with two edges. This implies
that G can be totally colored by five colors, a contradiction. Now we show
it is impossible that ¢; = ¢4 and ¢; # ¢5. If ¢1 = ¢4, then we can interchange
colors c3 and ¢ at v and color zx by c3. It follows that we can also color
zy by a color in C\{c1, c2,c3,c5}. Similarly we can color vertices z and y
since they are both vertices of degree 2. This implies that G can be totally
colored by five colors, a contradiction.

Similarly, we can show that ¢; # ¢3 and ¢; # ¢5. Since ¢1 € {ca, 3, ¢4, ¢35},
c1 can be assigned to zy and there is a color available for zz, x and y. This
implies that G can be totally colored by five colors, a contradiction. [

To prove (4), construct a new charge w*(z) on G as follows:

R41: Each r(> 15)-face gives 1 — % to its incident vertices.
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R42: Each 2-vertex receives % from its neighbors if it is incident with a

3-face and receives % from its 2-master otherwise.

R43: Each 3-face receives % from its incident vertices.

It is obvious that w*(f) = 0 for any face f. Let v be an arbitrary vertex
of G. First consider the case of d(v) = 2. If it is incident with a 3-face,
then its other incident face f must have degree at least 16. From (d), any
neighbor of v should be of degree at least (A + 2) — 2 = 4. Hence, they
can not be 2-vertices. It follows that v receives at least 1 — 1% = % from
f and 2 x % = % from its neighbors, and gives % to its incident 3-face.

Otherwise v receives at least 2 x % = % from its incident faces and %
from its 2-master. Hence, w*(v) > w(v) + min{3 + B — 1,22 4+ 31 = 0.

Now consider the case of d(v) = 3. v receives at least 2 x 1—% = % from its

incident faces. Hence, w*(v) = w(v) + 2 — ¥ = % > 0. If d(v) = 4 and
it is incident with two 3-faces, then v is adjacent to at most one 2-vertex
by Claim 4. It follows that w*(v) > w(v) + 2 — (2 + 1) = L5 > 0.
Otherwise it receives at least 3 X % from its incident faces, and gives at
most % to its incident 3-face and % + 1—85 to its adjacent 2-vertices. It follows
that w*(v) > w(w) + 2 — (3 4+ 5 + &) = $3 > 0. This implies that
>wevur W(T) = X eyurwt(x) > 0, a contradiction. This completes the
proof of (4). |

In the proof of the Theorem, we showed that >y pw(z) = 3 cvur w*(2)
> 0. It implies the following corollary.

Corollary 1. Let G be a graph with mazimum degree A embedded in a
surface of nonnegative characteristic, and G has no cycle of length from 4 to

k, where k > 4. Then x7(G) = A+1if (A k) € {(7,4),(6,5),(5,7),(4,14)}.
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