Discussiones
Mathematicae Graph Theory 21(1) (2001) 167-177
DOI: https://doi.org/10.7151/dmgt.1141
GALLAI'S INNEQUALITY FOR CRITICAL GRAPHS OF REDUCIBLE HEREDITARY PROPERTIES
Peter Mihók Mathematical Institute of Slovak Academy of Sciences |
Riste Skrekovski Departement of Mathematics University of Ljubljana |
Abstract
In this paper Gallai's inequality on the number of edges in critical graphs is generalized for reducible additive induced-hereditary properties of graphs in the following way. Let P1, P2, …,Pk (k ≥ 2) be additive induced-hereditary properties, ℜ = P1 º P2 º… ºPk and δ = ∑i = 1k δ(Pi). Suppose that G is an ℜ -critical graph with n vertices and m edges. Then 2m ≥ δn + [(δ−2)/(δ2+2δ−2)] n + [(2δ)/(δ2+2δ−2)] unless ℜ = O2 or G = Kδ+1. The generalization of Gallai's inequality for P-choice critical graphs is also presented.Keywords: additive induced-hereditary property of graphs, reducible property of graphs, critical graph, Gallai's Theorem.
2000 Mathematics Subject Classification: 05C15, 05C75.
References
[1] | G.A. Dirac, A theorem of R.L. Brooks and a conjecture of H. Hadwiger, Proc. London Math. Soc. 7 (1957) 161-195, doi: 10.1112/plms/s3-7.1.161. |
[2] | O.V. Borodin, A.V. Kostochka and B. Toft, Variable degeneracy: extensions of Brooks' and Gallai's theorems, Discrete Math. 214 (2000) 101-112, doi: 10.1016/S0012-365X(99)00221-6. |
[3] | M. Borowiecki, E. Drgas-Burchardt and P. Mihók, Generalized list colourings of graphs, Discuss. Math. Graph Theory 15 (1995) 185-193, doi: 10.7151/dmgt.1016. |
[4] | M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68. |
[5] | P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combin., Graph Theory and Computing, Congressus Numerantium XXVI (1979) 125-157. |
[6] | T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373-395. |
[7] | T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, New York, 1995). |
[8] | A.V. Kostochka, M. Stiebitz and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996) 299-303, doi: 10.1016/0012-365X(95)00294-7. |
[9] | A.V. Kostochka and M. Stiebitz, On the number of edges in colour-critical graphs and hypergraphs, Combinatorica 20 (2000) 521-530, doi: 10.1007/s004930070005. |
[10] | A.V. Kostochka and M. Stiebitz, A New Lower Bound on the Number of Edges in Colour-Critical Graphs and Hypergraphs, manuscript, 1999. |
[11] | M. Krivelevich, On the minimal number of edges in color-critical graphs, Combinatorica 17 (1997) 401-426, doi: 10.1007/BF01215921. |
[12] | M. Krivelevich, An improved bound on the minimal number of edges in color-critical graphs, Electronic J. Combin. 5 (1998) #R4. |
[13] | P. Mihók, On the structure of the point arboricity critical graphs, Math. Slovaca 31 (1981) 101-108. |
[14] | R. Skrekovski, On the critical point-arboricity graphs, manuscript, 1998. |
[15] | C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory (B) 70 (1997) 67-100, doi: 10.1006/jctb.1996.1722. |
[16] | V.G. Vizing, Coloring the vertices of a graph in prescribed colours (in Russian), Diskret. Analiz 29 (1976) 3-10. |
Received 2 August 2000
Revised 9 May 2001
Close