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Abstract

In this paper Gallai’s inequality on the number of edges in critical
graphs is generalized for reducible additive induced-hereditary prop-
erties of graphs in the following way. Let P1,P2, . . . ,Pk (k ≥ 2)
be additive induced-hereditary properties, R = P1◦ P2◦ · · · ◦Pk and
δ =

∑k
i=1 δ(Pi). Suppose that G is an R-critical graph with n vertices

and m edges. Then 2m ≥ δn + δ−2
δ2+2δ−2 n + 2δ

δ2+2δ−2 unless R = O2

or G = Kδ+1. The generalization of Gallai’s inequality for P-choice
critical graphs is also presented.
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1. Introduction and Notation

A convenient language that may be used in formulating problems of graph
colouring in a general setting is the language of reducible properties of
graphs. Let us denote by I the class of all finite simple graphs. A property
of graphs P is any nonempty proper isomorphism closed subclass of I. Let
P1,P2, . . . ,Pn be properties of graphs. A graph G is vertex (P1,P2, . . . ,Pn)-
colorable (G has property P1◦P2◦ · · · ◦Pn) if the vertex set V (G) of G can
be partitioned into n sets V1, V2, . . . , Vn such that the subgraph G[Vi] of G
induced by Vi belongs to Pi, i = 1, 2, . . . , n. The corresponding vertex col-
oring f is defined by f(v) = i whenever v ∈ Vi, i = 1, 2, . . . , n. In the case
P1 = P2 = · · · = Pn = P we write P1◦P2◦ · · · ◦Pn = Pn and we say that
G ∈ Pn is (P, n)-colorable. Let us denote by O the class of all edgeless
graphs. The classical graph coloring problems deals with proper coloring
where P1 = P2 = . . . = Pn = O so that a graph G is n-colorable if and
only if G ∈ On. The basic property of the proper coloring is that every
induced subgraph of a n-colorable graph is n-colorable and if every con-
nected component of a graph G is n-colorable, then G is n-colorable, too.
In this paper we consider as the generalizations of the proper coloring only
such vertex (P1,P2, . . . ,Pn)-colorings where the properties P1,P2, . . . ,Pn

preserve the above mentioned requirements i.e., they are closed to induced
subgraphs and disjoint union of graphs. Such properties of graphs are called
induced-hereditary and additive. The set of all (additive) induced-hereditary
properties will be denoted by (Ma) M.

An additive induced-hereditary propertyR is said to be reducible if there
exist additive induced-hereditary properties P1 and P2 such thatR = P1◦P2,
otherwise the property R is irreducible.

If P is an induced-hereditary property, then the set of minimal forbidden
subgraphs of P, called P-critical graphs, is defined as follows:

C(P) = {G ∈ I : G /∈ P but for each proper induced subgraph H of G,

H ∈ P}.
Every additive induced-hereditary property P is uniquely determined by
the set of connected minimal forbidden subgraphs. For the class Ok of all
k-colorable graphs the set C(Ok) consists of vertex-(k + 1)-critical graphs.

To investigate the structure of R-critical graphs the following invariants
of properties are useful. For an arbitrary graph theoretical invariant ρ and
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an induced-hereditary property P let us define:

ρ(P) = min{ρ(F ) : F ∈ C(P)}.
E.g. the invariant χ(P) is used in extremal graph theory. It is quite easy
to prove that for every G ∈ C(R), R = P1◦P2◦ · · · ◦Pn, the minimum degree
δ(G) of G is at least δ = δ(P1) + δ(P2) + · · · + δ(Pn) i.e., δ(R) ≥ δ. Let
us call the vertices of degree δ = δ(P1) + δ(P2) + · · · + δ(Pn) in the graph
G ∈ C(R) minor.

Analogously as for On-critical graphs, using the classical recoloring
method of Gallai [6], generalizations of the well-known Gallai’s theorem
can be obtained.

Theorem 1 [4]. Let P1,P2, . . . ,Pn be additive induced-hereditary proper-
ties, R = P1◦ P2◦ · · · ◦Pn and G ∈ C(R). Then every block B of the subgraph
induced by the set of minor vertices of G is one of the following types:

(a) B is a complete graph of order ≤ δ + 1,

(b) B is a δ(Pi)-regular graph and B ∈ C(Pi) for some i,

(c) ∆(B) ≤ δ(Pi) and B ∈ Pi,

(d) B is an odd cycle.

An analogous result for P-choice critical graphs have been obtained in [3].
The presented results can be considered as generalizations of Gallai’s and
Brooks’ Theorems (see [2, 5, 8, 15, 16]).

Let G be a graph and let L(v) be a list of colours prescribed for the
vertex v, and P ∈ M. A (P, L)-colouring is a graph P-colouring f with the
additional requirement that for all v ∈ V (G), f(v) ∈ L(v). If G admits
a (P, L)-colouring, then G is said to be (P, L)-colourable. The graph G
is (P, k)-choosable if it is (P, L)-colourable for every list L of G satisfying
|L(v)| ≥ k for every v ∈ V (G). The P-choice number chP(G) of the graph
G is the smallest natural number k such that G is (P, k)-choosable.

For a property P ∈ M a graph G is said to be (P, L)-critical if G has
no (P, L)-colouring but G − v is (P, L)-colourable for all v ∈ V (G). The
following statement is easy to prove: If P ∈ M and G is (P, L)-critical,
then dG(v) ≥ δ(P)|L(v)| for any vertex v of G. Let us denote by S(G) =
{v : v ∈ V (G), dG(v) = δ(P)|L(v)|}. For a nontrivial property P ∈ M, a
graph G is said to be (vertex) (P, k)-choice critical if chP(G) = k ≥ 2 but
chP(G−v) < k for all vertices v of G. According to the previous definitions,
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it follows immediately that if G is (P, k+1)-choice critical, then G is (P, L)-
critical with some list |L(v)| = k for all v ∈ V (G).

Theorem 2 [3]. Let P be an additive induced-hereditary property and G
be a (Pk, L)-critical graph (i.e., a (P, k + 1)-choice critical graph). Then
every block B of the subgraph of G induced by the set S(G) = {v : v ∈
V (G), degG(v) = δ(P)|L(v)|} of minor vertices is one of the following types:
(a) B is a complete graph,

(b) B is a δ(P)-regular graph and B ∈ C(P),
(c) ∆(B) ≤ δ(P) and B ∈ P,

(d) B is an odd cycle.

As for chromatically critical graphs, the structure of the subgraph induced
by minor vertices of a critical graphs G implies a lower bound on the number
of edges of G, which will be considered in Section 3.

2. δ-Graphs

Denote by K+
n the graph comprising of two blocks where the first one is

isomorphic to Kn and the second is isomorphic to K2. The graph K+
n has

only one vertex of degree 1, we call it a pendant-vertex of K+
n , the subgraph

Kn in K+
n is the head of K+

n .
A connected graph G is a δ-graph (δ ≥ 1) if all cut-vertices of G are of

degree δ and all other vertices are of degree δ − 1. Thus Kδ is a δ-graph.
Let G be a δ-graph and let B be an endblock of G isomorphic to Kδ. Note
that if B 6= G, then B is a head of a subgraph, say H, isomorphic to K+

δ .
We will use to say that H is a pendant K+

δ of G. The graph H is redundant,
if by deleting the head of H in G, the remaining graph is also a δ-graph.
If G is a δ-graph with no redundant pendant K+

δ subgraphs, then G is a
compact δ-graph.

Theorem 3. Let G∗ be a δ-graph with n vertices and c cut-vertices. Then,

c

2
≤ n

δ
− 1.(1)

Proof. For the sake of simplicity in this proof, for an arbitrary δ-graph H
on nh vertices and with ch cut-vertices, we define ϕ(H) = nh/δ − ch/2. So,
we should prove that ϕ(G∗) ≥ 1.
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Suppose that the claim is false and G∗ is a counterexample with n minimum.
Thus, ϕ(G∗) < 1. It is easy to see that G∗ is not 2-connected, since in this
case c = 0 and n ≥ δ. Note that the claim is valid for δ = 1. So, we assume
that δ > 1. Let B be the set of blocks of G∗.

Claim 1. G∗ is a compact δ-graph.

Suppose that it is false. Then there is a redundant pendant K+
δ subgraph

H in G∗. Let Ĝ be the graph constructed from G∗ by deleting the head
of H. Then Ĝ is a δ-graph. Let n̂ and ĉ be the number of vertices and
the number of cut-vertices of Ĝ. Obviously, n̂ = n − δ. Obsereve that the
pendant-vertex v of H is incident with precisely two blocks of G∗. In the
first block (that is the bridge of H) v has degree 1 and in the second block
it has degree δ− 1. So after deleting the head of H, in the remaining graph
Ĝ the vertex v is not a cut-vertex any more. Therefore, ĉ = c − 2. By the
minimality of G∗, ϕ(Ĝ) ≥ 1. So,

ϕ(G∗) =
n

δ
− c

2
=

n̂

δ
− ĉ

2
= ϕ(Ĝ) ≥ 1.

But it is a contradiction.

Claim 2. Every bridge of G∗ is an edge of a pendant K+
δ .

Suppose that it is false. Let e = u1u2 be an bridge that is not an edge of a
pendant K+

δ subgraph of G∗. Denote by G1 and G2 the components of the
graph G∗ − e and let us assume that ui be a vertex in Gi. Let G∗

i be the
δ-graph constructed from Gi by gluing at ui the pendant vertex of a K+

δ .
Since, e is not a part of a pendant K+

δ subgraph of G∗, it follows that G∗
1

and G∗
2 have smaller number of vertices than G∗. Now, by the minimality,

we infer that ϕ(G∗
1) ≥ 1 and ϕ(G∗

2) ≥ 1. Denote by ni and ci the number of
vertices and the number of cut-vertices in G∗

i . Then,

n = n1 + n2 − 2δ and c = c1 + c2 − 2.

Now, we obtain a contradiction in the following way

ϕ(G∗) =
n

δ
− c

2
=

n1 + n2

δ
− c1 + c2

2
− 1 = ϕ(G∗

1) + ϕ(G∗
2)− 1 ≥ 1.

Thus Claim 2 is proved.
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Let B∗ be a block of G∗. Since G∗ is a compact δ-graph, we may assume that
B∗ is not a head of a pendant K+

δ subgraph of G∗. We consider the block
structure of G∗ as a kind of rooted tree, whose root is B∗. In other words,
we define a function depth : B → N , as it follows. First, set depth(B) = ∞
for every B ∈ B. Now, apply the following steps until every block gets finite
depth:

Step 0. depth(B∗) = 0.

Step i. (i ≥ 1) If B is a block incident with a block whose depth is i − 1,
then depth(B) := min (depth(B), i).

If blocks B1 and B2 have common cut-vertex and depth(B1) = depth(B2)−1,
then we will say that B1 is a parent of B2 and B2 is a son of B1. Note that
every block different from B∗ has precisely one parent and it may have many
sons. In the sequel, we will denote by nB and cB the number of vertices and
the number of cut-vertices of a block B.

We assign a charge ϕ(B) to every block B ∈ B in the next way:

ϕ(B) =





nB − 1
δ

− cB − 1
2

, B 6= B∗;

nB

δ
− cB

2
, B = B∗.

(2)

In fact, we assign charge 1
δ − 1

2 to every cut-vertex of G∗ and 1
δ to every

other vertex of G∗. Then, ϕ(B) is the sum of the charges of all of its
vertices except the cut-vertex incident with its parent. Note that the total
sum of the charges of all blocks (or all vertices) is equal to ϕ(G∗).

Now, we apply to every block the following rule. First, we apply it on
the blocks with highest depth, then on the blocks with depth smaller for
one, and so on.

Rule R. Suppose that B1 is a son of B2 attached at a vertex v. Then, B1

sends (through v) its charge and the charge received from its sons to B2.

Note that the redistribution will stop at block B∗ since it has no parent.
The total charge ϕ(G∗) will be accumulated in B∗. Denote by ĉ(B, v) the
charge that a block B receives from its sons attached at the cut-vertex v by
Rule R.
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Claim 3. Suppose that v is a cut-vertex of G∗ incident with a block B and
incident also with some sons of B. Then, ĉ(B, v) ≥ δ−1

δ .

Suppose that the claim is false and the pair (B, v) is a counterexample. We
may assume that depth(B) is as large as possible. Suppose also that B̂ is
an arbitrary son of B attached at v. Let us consider the minimal possible
value of charge that B̂ could send to B by Rule R.

Note that every end-block of G∗ has ≥ δ vertices. So, if B̂ is an end-
block, then it sends ϕ(B̂) ≥ δ−1

δ charge to B.
Suppose now that B̂ is a bridge. By Claim 2, B̂ is an edge of K+

δ

subgraph whose pendant-vertex is v. So, in this case B̂ sends

δ − 1
δ

+
(

1
δ
− 1

2

)
=

1
2

charge to B.
Finally, we may assume that B̂ is neither an end-block nor a bridge of

G∗. Note that c
B̂
≥ 2. By the maximality of the depth of B, we infer that

B̂ sends at least

n
B̂
− 1
δ

− c
B̂
− 1
2

+ (c
B̂
− 1)

δ − 1
δ

(3)

charge to B. If c
B̂
≥ 3, then by (3) and by n

B̂
≥ c

B̂
, we infer ĉ(B, v) ≥

(c
B̂
− 1)1

2 ≥ 1. So, let c
B̂

= 2. Since B̂ is not a bridge, there is a vertex v̂ of
B̂ which is not a cut-vertex of G∗. Since v̂ is of degree δ− 1 in B̂, it follows
that B̂ has at least δ vertices, i.e., n

B̂
≥ δ. Thus, by (3) and by δ ≥ 2, we

obtain that B̂ sends charge to B at least

2
(

δ − 1
δ

)
− 1

2
≥ δ − 1

δ
.

By above, if B has a son which is not a bridge attached at v then ĉ(B, v) ≥
δ−1

δ . So assume that all sons of B attached at vertex v are bridges. Then,
by Claims 1 and 2 and by the choice of B∗, it follows that k ≥ 2, and hence
ĉ(B, v) ≥ 1. Thus Claim 3 is proved.

Using Claim 3, we will prove that ϕ(G∗) ≥ 1 in a similar way as we argue
above. Note that

ϕ(G∗) ≥ ϕ(B∗) + cB∗
δ − 1

δ
≥ nB∗

δ
− cB∗

2
+ cB∗

δ − 1
δ

.(4)
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If cB∗ ≥ 2, then by (4), we obtain ϕ(G∗) ≥ cB∗
2 ≥ 1. Thus let us assume

that cB∗ = 1. In this case, B∗ is an end-block and so nB∗ ≥ δ. Thus we infer
that ϕ(G∗) ≥ δ

δ − 1
2 + δ−1

δ ≥ 1. This completes the proof of the theorem.

The following result is a generalization of Gallai’s technical lemma
[6, Lemma 4.5].

Corollary 4. Let G be a graph with n vertices, m edges and let δ ≥ 1. Sup-
pose that ∆(G) ≤ δ and each block B of G has maximum degree ∆(B) < δ.
Then,

m ≤
(

δ − 1
2

+
1
δ

)
n− 1.(5)

Proof. Let us remark, that if G is 2-connected, then ∆(G) ≤ δ−1. Let G∗

be the graph constructed from G in the following way: at every cut-vertex
v ∈ V (G) glue δ − d(v) copies of pendant K+

δ and at every other vertex of
degree < δ − 1 glue also δ − d(v) copies of pendant K+

δ . Note that G∗ is a
δ-graph.

Suppose that we have added k copies of K+
δ in G in order to construct

G∗. Denote by n∗, c∗, and m∗ the number of vertices, the number of cut-
vertices, and the number of edges of G∗, respectively. By Theorem 3, c∗

2 ≤
n∗
δ − 1. Then,

m∗ =
(δ − 1)

2
(n∗ − c∗) +

δ

2
c∗ =

(δ − 1)n∗

2
+

c∗

2

≤ (δ − 1)n∗

2
+

n∗

δ
− 1 =

(
δ − 1

2
+

1
δ

)
n∗ − 1.

Thus we have proved the claim for G∗. Since,

n∗ = n + δk and m∗ = m + k

(
δ

2

)
+ k,

we have

m = m∗ − k

(
δ

2

)
− k ≤

(
δ − 1

2
+

1
δ

)
n∗ − 1− k

(
δ

2

)
− k

=
(

δ − 1
2

+
1
δ

)
n− 1.
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3. Gallai’s Inequality

Gallai [6] proved that a k-ciritical graph (k ≥ 4) on n vertices and m edges,
different from Kk satisfies the following inequality

2m ≥ (k − 1)n +
k − 3
k2 − 3

n.

This clasical result was later improved by Krivelevich [11, 12] and Kostochka
and Stiebitz [9, 10]. See also the book of Jansen and Toft [7] for critical
graphs with few edges.

Theorem 5. Let P1,P2, . . . ,Pk (k ≥ 2) be additive induced-hereditary prop-
erties, R = P1◦ P2◦ · · · ◦Pk and δ =

∑k
i=1 δ(Pi). Suppose that G is an

R-critical graph with n vertices and m edges. Then

2m ≥ δn +
δ − 2

δ2 + 2δ − 2
n +

2δ

δ2 + 2δ − 2
(6)

unless R = O2 or G = Kδ+1.

Proof. Obviously, if G = Kδ+1 then (6) is not satisfied. It is easy to see
that if R = O2, then G is an odd cycle. In this case ineqaulity (6) is also
not satisfied. So, assume that R 6= O2 and G 6= Kδ+1. It is easy to see,
that innequality (6) is satisfied for δ = 2, since a cycle can be critical only
for R = O2. Hence we infer that δ ≥ 3. Denote by H the subgraph of G
induced by the minor vertices i.e., vertices of degree δ. Let n′ and m′ be the
number of vertices and the number of edges of H. It is not hard to see that

m ≥ δn′ −m′.(7)

Since R 6= O2, by Theorem 1 it follows that ∆(H) ≤ δ and each block B of
H has ∆(B) < δ.

m ≥ δn′ −
(

δ − 1
2

+
1
δ

)
n′ + 1 ≥

(
δ + 1

2
− 1

δ

)
n′ + 1.(8)

Similarly, the following is satisfied

2m ≥ δn′ + (δ + 1)(n− n′) = (δ + 1)n− n′.(9)
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After multiplying (9) by ( δ+1
2 − 1

δ ) and additing it to (8), we obtain:
(

δ + 2− 2
δ

)
m ≥ (δ + 1)

(
δ + 1

2
− 1

δ

)
n + 1.(10)

Finally, from (10) by some calculations, we easily obtain (6).

Remark that a special case of the above theorem was proved in [14]. Also
remark, that Corollary 4 is a generalization of the Gallai’s technical lemma [6,
Lemma 4.5].

Using Theorem 2, the same arguments give us the P-choice version of
Gallai’s inequality (as it is mentioned for P = O in [8]):

Theorem 6. Let P be additive induced-hereditary property and let k ≥ 2.
Let G be a (P, k + 1)-choice critical graph, with n vertices and m edges and
δ = δ(P) k. Then

2m ≥ δn +
δ − 2

δ2 + 2δ − 2
n +

2δ

δ2 + 2δ − 2
(11)

unless R = O2 or G = Kδ+1.

Let us finish the paper with the following problem. Dirac [1] proved that
for every k-critical graph G 6= Kk (k ≥ 3) on n vertices for the number of
edges m the following inequality holds:

2m ≥ (k − 1)n + (k − 3).

So an intersting problem is to generalized the above inequality for reducible
additive induced-hereditary properties of graphs.
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