DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 20(2) (2000) 255-265
DOI: https://doi.org/10.7151/dmgt.1124

SUM LABELLINGS OF CYCLE HYPERGRAPHS

Hanns-Martin Teichert

Institute of Mathematics
Medical University of Lübeck
Wallstraß e 40, 23560 Lübeck, Germany
e-mail: teichert@math.mu-luebeck.de

Abstract

A hypergraph H is a sum hypergraph iff there are a finite S ⊆ IN+ and d, [`d] ∈ IN+ with 1 < d ≤ [`d] such that H is isomorphic to the hypergraph Hd,[`d] (S) = (V,E) where V = S and E = {e ⊆ S:d ≤ |e| ≤ [`d] ∧∑v ∈ e v ∈ S}. For an arbitrary hypergraph H the sum number σ = σ(H) is defined to be the minimum number of isolated vertices y1,…, yσ ∉ V such that H∪{y1,…,yσ} is a sum hypergraph.

Generalizing the graph Cn we obtain d-uniform hypergraphs where any d consecutive vertices of Cn form an edge. We determine sum numbers and investigate properties of sum labellings for this class of cycle hypergraphs.

Keywords: hypergraphs, sum number, vertex labelling.

2000 Mathematics Subject Classification: 05C65, 05C78.

References

[1] C. Berge, Hypergraphs, (North Holland, Amsterdam - New York - Oxford - Tokyo, 1989).
[2] J.C. Bermond, A. Germa, M.C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, Probl. Comb. et Théorie des Graphes, Orsay 1976, Colloques int. CNRS 260 (1978) 39-43.
[3] F. Harary, Sum graphs and difference graphs, Congressus Numerantium 72 (1990) 101-108.
[4] F. Harary, Sum graphs over all the integers, Discrete Math. 124 (1994) 99-105, doi: 10.1016/0012-365X(92)00054-U.
[5] G.Y. Katona and H.A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999) 205-212, doi: 10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.0.CO;2-O.
[6] M. Miller, J.F. Ryan and W.F. Smyth, The Sum Number of the cocktail party graph, Bull. of the ICA 22 (1998) 79-90.
[7] A. Sharary, Integral sum graphs from complete graphs, cycles and wheels, Arab. Gulf J. Scient. Res. 14 (1996) 1-14.
[8] M. Sonntag, Antimagic and supermagic vertex-labelling of hypergraphs, Techn. Univ. Bergakademie Freiberg, Preprint 99-5 (1999).
[9] H.-M. Teichert, Classes of hypergraphs with sum number one, Discuss. Math. Graph Theory 20 (2000) 93-103, doi: 10.7151/dmgt.1109.

Received 7 February 2000
Revised 7 April 2000


Close