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Abstract

A hypergraph H is a sum hypergraph iff there are a finite S C IN*
and d,d € INT with 1 < d < d such that H is isomorphic to the
hypergraph H; 5(5) = (V,&) where V. =Sand £ ={e C S:d < e[ <
dAY,c.v € S} For an arbitrary hypergraph H the sum number
o = o(H) is defined to be the minimum number of isolated vertices
Y1s-- Yo € V such that HU {y1,...,y,} is a sum hypergraph.

Generalizing the graph C), we obtain d-uniform hypergraphs where
any d consecutive vertices of C, form an edge. We determine sum
numbers and investigate properties of sum labellings for this class of
cycle hypergraphs.
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1 Definitions and Introduction

The notion of sum graphs was introduced by Harary [3]. This graph theoretic
concept can be generalized to hypergraphs as follows.

All hypergraphs considered here are supposed to be nonempty and fi-
nite, without loops and multiple edges. In standard terminology we follow
Berge [1]. By H = (V,€) we denote a hypergraph with vertex set V'
and edge set £ C P(V)\{0}. Further we use the notations d = d(H) =
min {le| : e € £} and d = d(H) = max {|e| :e € £}; if d = d = d we say H
is a d-uniform hypergraph. A hypergraph is linear if no two edges intersect
in more than one vertex.
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Let S C INT be finite and d,d € INT such that 1 < d < d. Then
H,3(5) = (V.€) is called a (d,d)-sum hypergraph of S iff V.= S and
E={eCS:d<le] <dANY,v € S} Furthermore, a hypergraph
H is a sum hypergraph iff there exist S C INT and d,d € IN* such that H
is isomorphic to H,5(5). For d = d = 2 we obtain the known concept of
sum graphs. For an arbitrary hypergraph H the sum number o = o(H) is
defined to be the minimum number of isolated vertices y1,...,y, € V such
that HU{y1,...,ys} is a sum hypergraph.

The concept of cycles C,, can be extended to hypergraphs in several
ways. One possibility is the consideration of linear hypergraphs C,, with m
vertices and n edges each containing an arbitrary number d; > 2 of vertices,
j =1,...,n. These hypercycles have sum number o(Cy,) = 1 if d; > 3 for
j =1,...,n (Teichert [9]). Furthermore, in case of d; =d for j =1,...,n,
they represent hamiltonian cycles in the sense of Bermond et al. [2].

Katona and Kierstead [5] explain that this notion of hamiltonian cycles
in hypergraphs is not strong enough for many applications. They call a cyclic
ordering (vy, ..., v,) of the vertices of a d-uniform hypergraph a hamiltonian
chain iff {v;,vi11,...,v;+4-1} is an edge whenever 1 < i < n (the indices
are taken modulo n). This motivates the following definition. Let d,n € IN
with n > 3 and 2 < d < n—1. The d-uniform hypergraph ég = (V,€&) is the
strong hypercycle with n vertices iff

(1) V=Av,...,un}, E={e; ={vi,vit1,.. ., Vizq_1} : i=1,...,n},

where indices are taken mod n .

Sonntag [8] proves that every strong hypercycle has an antimagic vertex
labelling. In this paper we deal with sum labellings of strong hypercycles.
In Section 2 we show for the case n > 2d + 1 that o(C%) = d. In Section 3
we investigate properties of strong hypercycles with at most 2d vertices;
particularly we determine the sum numbers of ég 15 C2 and Cg.

2 The Sum Number of ég for the Case n > 2d + 1

Let Y = {y1,...,9s} with 0 = o(C%) be a set of isolated vertices such that
ég UY is a sum hypergraph. For the edges e; from (1) we use the notation
ei = {vi,...,v5} where v} = v;,..., v} = vi g_1. All vertices of V=V UY
are referenced by their labels. A vertex labelling of é,‘f UY induces the
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mapping r*: .
PV)> M r*(M):=> velNT.
veEM

A sum labelling of V is a vertex labelling such that the set S of the vertex
labels defines a (d, d)-sum hypergraph Hg 4(S) of S with Hgq(S) = CIUY.

The following three lemmata describe properties of sum labellings for
strong hypercycles with n > 2d 4 1 vertices; they are needed to prove the
main result of this section.

Lemma 1. Assume n > 2d + 1 and consider a sum labelling of V. Then
for any two different edges e;,e; € £ holds

(2) eiNe; #0 = 17(e;) #1%(ey).

Proof. Let ej,e;j € £ with ¢ < j be arbitrarily chosen and suppose
e;ne; £ 0, ie.,

(3) EIkE{Z,...,d}:v};:v{,...,vfl:vé_k+1.
Now assume 7*(e;) = 7*(e;). By (3) follows
(4) r({Vgpgzs - vgd) = r (o, vk )
The structure of C¢ implies
Jep €€ epNej = (v 4 p =00, 0) =00 |}
and by (4) we obtain
r(ep) = r ({V)_pyor- - UL VL, - UG)) = r*({vl, . vp_ g, vk, 0h)).

The condition n > 2d + 1 provides e; N e, = . Moreover v} and v} are not

consecutive vertices vy, v,41 in (1). Hence [{vi,...,v}_;,of, ..., 05} =4
and {v},...,v}_q,0b;... 08} € &, a contradiction to the sum hypergraph
property which proves (2). [ |

Lemma 2. For the sum number of strong hypercycles holds
(5) o(C >d forn>2d+1.

Proof. Consider in a sum labelling of (f,ff U Y the vertex vpmax =
max{vi,...,v,}. There are d pairwise distinct edges e € £ with vmax €
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ef; i = 1,...,d. This yields R = {r*(¢}) : i = 1,...,d} C Y and by

19

Lemma 1 follows |R| = d. Hence o(C%) = |V| > d. |

Our aim is to show that equality holds in (5). For this purpose we assume
Y ={y1,...,yq} and define the following vertex labelling:

(6) o i, for i=1,...,d,
Y] r*(eia), for i=d+1,...,n,

Yir =1 (en_p), for k=0,...,d—1.

The next step is to show that labelling (6) and the sum hypergraph property
generate only edges contained in the set £ of (1).

Lemma 3. Suppose that the vertex set VU{yi,...,yq4} of éﬁ UY is labelled
according to (6) and let k € {0,...,d — 1} be arbitrarily chosen. Then

(7) VMCV:r*(M)=ysr A M| =d=M=e,_4,

8) YMCVUY :+*"(M)=ygp A M| =dAn>2d+1= MOY = 0.

Proof. 1. To prove (7) we use the notation e, = LU F with L =
{vn—k,...,vn} and F = {v1,...,v4_k_1}. First we show

9) LC M.

Assume there is a v,—; € M, j € {0,...,k}. Then (6) and |M| = d yield
(10) (M) < " (L\A{vn—j}) + 7" ({Vn—k-15 -+ Vn—d})-

We define R := {v,_k—_1,...,Un_q} and consider two cases:

Case 1. If k € {1,...,d — 1} it follows |R| = d — k < d and therefore
r*(R) < vp—j. Using (10) we obtain

r*(M) <r*(L) < r*(en—k),
a contradiction to (M) = yg—r = 7" (en—x).

Case 2. If k = 0 then j = 0,L \ {v,—;} = 0 and R = e,,_4. Hence
by (10)
r* (M) <0+ 71*(en—q) = vp < min{yi,...,yq}

which contradicts 7*(M) = yg— = Y-
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Thus we have a contradiction for each k € {0,...,d—1} and (9) is true, i.e.,
(11) r*(M\ L) =1r"(ep—i) —r*(L) = r*(F).

Because of |M \ L| = |F| it follows with (6) and (11) that only M \ L = F
is possible. Hence M = LU F = e,,_j and (7) is shown.

2. To prove (8) we first suppose |M NY| > 2. This yields

r*(M) > 2v, = v+ (Un—1+...+0p-q) = Y1 +Vp—q > y1 = max{yi,..., Y4},
a contradiction to 7*(M) = y4—x. Hence we know that

(12) IMNY| <1

must be fulfilled. Now suppose that (8) is not true, i.e.,

IMCVUY Jie{l,...,d—1}:
(M) =ya—i N |M|=d AN n>2d+1 AN MNY #0.

Using (12) this implies
(13) 35 €{0,...,d—2y IM CV :ygs =ya, +r*(M)ANM| =d—1.
By (6) and (13) follows r*(M') = r*(ep—i) — r*(en—j), i-e.,

(14) r*(M') = *{vn—is -y Un—j—1}) = 7" ({va—i, ..., va—j—1})-

Hence there must be a vertex v,_ € {vp—i,...,Un—j—1} with v, &
M'. Using |[M'| = d — 1 and (14) it follows that the number v,_j —
7*({Vd—i,--.,v4—j—1}) is not greater than the sum of the labels of at most

d — (i — j) vertices v, with p < n —i. Observe that szﬁ'j Un_i_k 18 the
largest sum of this kind. Now consider the number

pi=vn—i — 7 ({Vd—ir -, Va—j—1}) < Vn—i — 7 ({Va—is- -, Va—j—1})-
In the following we generate a contradiction to (13) by showing that

d—i+j
(15) w—= Z Up—i—k > 0
k=1
d

is fulfilled. With v,,—; = > vp_s_k, n>2d+ 1 and ¢ > j we obtain
k=1
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d—i+j d
K= Vp—i-k = ( Z Vn—i—k) — 7 ({vai, .- a'Ud—j—l})
k=1 k=d—i+j+1
d
> () vedsrn—iok) = 7 {va—i - va—j-1})
k=d—i+j+1
i—j
= O va—k—j+1) = ({vai - - - va—j—1})
k=1
= T*({Ud,i+1, e ,vd,j}) — T*({’Ud,i, ceoy vd,jfl})
= Ud—j — Vq—i > 0.
Hence (15) is true and assertion (8) is proved. |

Observe that assertion (8) in Lemma 3 cannot be proved if n < 2d + 1;
a simple calculation shows that inequality (15) is not true in this case.
Indeed, for instance for n = 8 and d = 4 the labelling (6) yields V =
{1,2,3,4,10,19,36,69} and Y = {134,125,108,75} which is not a sum la-
belling of Cf UY because 2+ 3 +4 +125 =134 € Y but {2,3,4,125} ¢ £.

Now we can formulate the main result of this section.

Theorem 4. For d > 2 and n > 2d + 1 the sum sumber of the strong
hypercycle C2 is given by
(16) o(Ch =d.

Proof.Let d > 2 and n > 2d+1. Lemma 2 shows o(C%) > d. The labelling
(6) is a vertex labelling of C% U {y1,...,yq} which generates all edges of the
strong hypercycle ég Finally Lemma 3 yields that (6) is a sum labelling of
V and this completes the proof. [

3 Strong Hypercycles With at Most 2d Vertices
The sum numbers for cycles C,, = (?7%, n > 3 are given in Harary [4] by

)2, it n#4,
(17) o(Cn) = { 3, if n=A4.
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Theorem 4 generalizes (17) for n > 5 and the next result shows that this
generalization is also possible for n = 3.

Theorem 5. For d > 2 and n = d + 1 the sum number of the strong
hypercycle C2 is given by

2d
Proof. From n = d + 1 follows that any two different edges e;,e; € £ have
exactly d — 1 vertices in common. Hence (2) is true in this case too, i.e.,

Veiej €€ :i#j=r"(e) #r(ej),

and by analogy with the proof of Lemma 2 we obtain O'(ég 1) > d. Ford =2
we obtain equality by (17), for instance with the labelling V' = {1,10,11},
Y = {21,12}. To show equality for d > 3 we use labelling (6); because
n = d+1 it suffices to prove, that any edge generated by the sum hypergraph
property contains only vertices of V| i.e.,

(19) YVMCVUY: " (M)eVUY A |M|=d = MNY =0.

Assuming the contrary we observe that (12) from the proof of Lemma 3 is
also true for n = d + 1. Hence

d—1
Jvl, vy €V IYEY ], v =d—1 A y’+2v§» ey.
j=1
Using d > 3, n=d+ 1 and (6) we obtain
d—1 d—1 3(d—1)
YAD U ZyatY G2 Yat =5 > vat(d=1) =y = max{ys, ..., ya},
j=1 j=1
a contradiction. Thus (19) holds and the proof is completed. [ ]

Summarizing the results we see that equalities (16) and (18) generalize the
result (17) for cycles C,, with n # 4. In the following we discuss the rema-
ining cases d+2 < n < 2d for strong hypercycles (fff These cases correspond
to the cycle Cy in (17).

Consider a hypergraph H = (V,€) and a labelling of V UY such that
H UY is a sum hypergraph. By analogy with Miller et al. [6] a vertex
v € VUY is said to be a working vertez iff its label corresponds to an edge
e € £. Hypergraphs which can only be labelled in such a way that all the
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working vertices are isolates belonging to Y are called exclusive. Sharary [7]
shows that the graph Cjy is exclusive; this fact is generalized by the following
result.

Theorem 6. The strong hypercycle ég is exclusive iff d +2 < n < 2d.

Proof. Theorems 4 and 5 show that é,ff is not exclusive for n > 2d+ 1 and
n = d + 1, respectively. In the following assume that d + 2 < n < 2d and
consider an arbitrary sum labelling of V' UY. It remains to show that

(20) Veec&:r(e) €Y.

1. Suppose (20) is false; then M = {e € £ : r*(e) € V} # (. Choose
é={01,...,04} € M such that

(21) r*(é) = geuﬁ r*(e).

Observe that é is not necessary uniquely determined. In this case we consider
M' C M with M' ={e € M :r*(e) = r*(é)}. If do, denotes the distance
function in the graph C), (where the edges of C,, = C2 are denoted according
to (1)) and vpax = max v choose ¢é such that additionally to (21) holds

(22) an(éyvmax): min an(eaUmax)y
ec M’

where dc, (€, Vmax) 1= mein de, (v, Umax)-
vee

Obviously, Umax € €, thus de, (€, Umax) > 1.

2. Let v € V be the vertex with o = r*(é). Clearly,0 ¢ é and with n < 2d
follows the existence of an edge €' € &£, such that 0,vym. € € and 0 is a

border vertex of €/, i.e., © has only one neighbour in (), that belongs to €’
in C¢. Obviously, ¢/ :=r*(¢/) € Y.

Now consider an edge e’ € £ with | Ne’| =d—1and 0 € €’. By n < 2d
we obtain

(23) ¢ = (¢ \ (D} U {os); g € {1.....d).

In part 3 of this proof we will show that

(24) Yy =r*")eY
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is fulfilled. Then, using (23) and (24) it follows for ¢/, y" € Y

d d

y =r*(e)=r*(")+ -9, :y”—i—(Z@i) — 0 :y"—i—Z@i ey
i=1 i=1
i)

but {y”,o1,...,9j-1,0j41,-..,04} € &, a contradiction. Hence (20) must be
true and it is only left to prove (24).

3. If ¥ # vmax then €’ is uniquely determined, vyax € €” and therefore (24)
is true.

In the following assume © = vyax. Then n > d + 2 implies that €/ can be
chosen in such a way, that ¢” # é. Further by (21) follows

(25) VeeM:r*(e) =71"(€) = Umax-
Hence (24) is proved by showing that
(26) () #r*(e)

is fulfilled. Clearly, if d¢, (€, vmax) > 1 it follows by dc, (€”, vmax) = 1 and
(22) that (26) is true.

For clarity we summarize the conditions for the remaining case:
Vmax = 0 = r*(€); é #€"; de, (6, vmax) = do, (€”, Vmax) = 1.
Without loss of generality we can use the following notation (see (1)):
V1 = Umax ; € ={v2,...,0a11}; € ={Vn_di1,--,Un}

Observe that €’ \ é = {va,...,v,_q} and é\ €’ = {vgia,...,v,}; further
n < 2d yields ¢ Né = {vp_gs1,...,va11} # 0.

Now assume r*(e’) = r*(é) and consider e; = {v1 = vUmax, v2,..., 04}
Obviously y; := r*(e1) € Y. We distinguish two cases:

Casel. f d+2<n<2d—1weobtainn—d+1<dand

yr =v1+ (V2 + ...+ Vp_gq) + Vp—gp1 + ...+ g
=v+ (vge2+ ...+ V) +Up_gr1+... tvg €Y.

This is a contradiction because |{vp—d+1,---,Vd, Vd+2,---,Un,v1}| = d but
{/UTL—CH-I) <oy Uds Ud+25 - - - 5 Un,y Ul} ¢ .
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Case 2. If n = 2d then v; = vpax = r*(é) = r*({vgt1, ..., vn}) yields

d n d n
(27) yL=vi+Y vp= Y, vty vp=y vp€Y.
k=2 k=d+1 k=2 k=2

Observe that d = 2 is not possible because r*(€”) = r*(é) would imply vy =
vy in that case; hence d > 3. We consider the edge e3 = {vs,...,v4492} # €.
By |e”" Nes| = d — 1 follows 7*(e3) # r*(€”) = Umax; using (25) this yields
y3 :=r*(e3) € Y. Furthermore n > d + 2 implies v; ¢ e3 and with (27) we
obtain

n
Y1 :ka = vo+(v3+...4v442)+v4s3+. . .+vy = vot+ystvgist. ..+, €Y.
k=2

This is a contradiction because |{y3,v2,v4s3,...,0n} = d but {ys,ve,
Vdt3y .- Un} & E.

Summarizing the results of both cases we have shown (26) and the proof is
completed. ™

Looking at Theorem 6 one may conjecture that o (C%) > d for d+2 < n < 2d;
formula (17) shows that this is true for the graph Cy. On the other hand
we observe that Lemma 1 ist not true for d+2 < n < 2d and this fact could
be a reason for decreasing sum numbers. Indeed, for d = 3 we obtain the
following result.

Theorem 7. For 3-uniform strong hypercycles with 5 or 6 vertices the sum
numbers are given by
a(C3) =3; a(C§) = 2.

Proof. Obviously, if for two different edges e;, e; € € holds 7*(e;) = r*(e;)
then |e; Nej| < d — 2. Therefore, if p denotes the maximum number of
pairwise distinct edges €1, ..., e}, with r*(e}) = ... = r*(e,), we have p < 3.
By |€| = n follows o/(C3) > 3 and o(C§) > 2 and we obtain equality by using
the sum labellings given below:

( ) (1,10,6,5,11;17,21,22),  if n =5,
Viyeo s Ui YLy ey Yo ) = )

Lroeo il oo Y (1,10,95,6,5,100;106,111), if n—=6. m
We do not know the exact values of o(C%) for d > 4 and d + 2 <
n < 2d. For instance the labelling (v1,..-,06;91,---,y3) = (1,100,4,6,
95,9; 111,114, 205) yields o(C¢) < 3.
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Conjecture. J(éﬁ) <dford>4and d+2<n<2d.
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