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Abstract

A hypergraph H is a sum hypergraph iff there are a finite S ⊆ IN+

and d, d ∈ IN+ with 1 < d ≤ d such that H is isomorphic to the
hypergraph Hd,d(S) = (V, E) where V = S and E = {e ⊆ S : d ≤ |e| ≤
d ∧ ∑

v∈e v ∈ S}. For an arbitrary hypergraph H the sum number
σ = σ(H) is defined to be the minimum number of isolated vertices
y1, . . . , yσ 6∈ V such that H ∪ {y1, . . . , yσ} is a sum hypergraph.

Generalizing the graph Cn we obtain d-uniform hypergraphs where
any d consecutive vertices of Cn form an edge. We determine sum
numbers and investigate properties of sum labellings for this class of
cycle hypergraphs.
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1 Definitions and Introduction

The notion of sum graphs was introduced by Harary [3]. This graph theoretic
concept can be generalized to hypergraphs as follows.

All hypergraphs considered here are supposed to be nonempty and fi-
nite, without loops and multiple edges. In standard terminology we follow
Berge [1]. By H = (V, E) we denote a hypergraph with vertex set V
and edge set E ⊆ P(V )\ {∅}. Further we use the notations d = d(H) =
min {|e| : e ∈ E} and d = d(H) = max {|e| : e ∈ E}; if d = d = d we say H
is a d-uniform hypergraph. A hypergraph is linear if no two edges intersect
in more than one vertex.
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Let S ⊆ IN+ be finite and d, d ∈ IN+ such that 1 < d ≤ d. Then
Hd,d(S) = (V, E) is called a (d, d)-sum hypergraph of S iff V = S and
E = {e ⊆ S : d ≤ |e| ≤ d ∧ ∑

v∈e v ∈ S}. Furthermore, a hypergraph
H is a sum hypergraph iff there exist S ⊆ IN+ and d, d ∈ IN+ such that H
is isomorphic to Hd,d(S). For d = d = 2 we obtain the known concept of
sum graphs. For an arbitrary hypergraph H the sum number σ = σ(H) is
defined to be the minimum number of isolated vertices y1, . . . , yσ 6∈ V such
that H ∪ {y1, . . . , yσ} is a sum hypergraph.

The concept of cycles Cn can be extended to hypergraphs in several
ways. One possibility is the consideration of linear hypergraphs Cm with m
vertices and n edges each containing an arbitrary number dj ≥ 2 of vertices,
j = 1, . . . , n. These hypercycles have sum number σ(Cm) = 1 if dj ≥ 3 for
j = 1, . . . , n (Teichert [9]). Furthermore, in case of dj = d for j = 1, . . . , n,
they represent hamiltonian cycles in the sense of Bermond et al. [2].

Katona and Kierstead [5] explain that this notion of hamiltonian cycles
in hypergraphs is not strong enough for many applications. They call a cyclic
ordering (v1, . . . , vn) of the vertices of a d-uniform hypergraph a hamiltonian
chain iff {vi, vi+1, . . . , vi+d−1} is an edge whenever 1 ≤ i ≤ n (the indices
are taken modulo n). This motivates the following definition. Let d, n ∈ IN
with n ≥ 3 and 2 ≤ d ≤ n− 1. The d-uniform hypergraph Ĉd

n = (V, E) is the
strong hypercycle with n vertices iff

V = {v1, . . . , vn}, E = {ei = {vi, vi+1, . . . , vi+d−1} : i = 1, . . . , n},(1)

where indices are taken mod n .

Sonntag [8] proves that every strong hypercycle has an antimagic vertex
labelling. In this paper we deal with sum labellings of strong hypercycles.
In Section 2 we show for the case n ≥ 2d + 1 that σ(Ĉd

n) = d. In Section 3
we investigate properties of strong hypercycles with at most 2d vertices;
particularly we determine the sum numbers of Ĉd

d+1, Ĉ3
5 and Ĉ3

6 .

2 The Sum Number of Ĉd
n for the Case n ≥ 2d + 1

Let Y = {y1, . . . , yσ} with σ = σ(Ĉd
n) be a set of isolated vertices such that

Ĉd
n ∪ Y is a sum hypergraph. For the edges ei from (1) we use the notation

ei = {vi
1, . . . , v

i
d} where vi

1 = vi, . . . , v
i
d = vi+d−1. All vertices of Ṽ = V ∪ Y

are referenced by their labels. A vertex labelling of Ĉd
n ∪ Y induces the
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mapping r∗:
P(Ṽ ) 3 M 7→ r∗(M) :=

∑

v∈M

v ∈ IN+.

A sum labelling of Ṽ is a vertex labelling such that the set S of the vertex
labels defines a (d, d)-sum hypergraph Hd,d(S) of S with Hd,d(S) ∼= Ĉd

n ∪ Y .
The following three lemmata describe properties of sum labellings for

strong hypercycles with n ≥ 2d + 1 vertices; they are needed to prove the
main result of this section.

Lemma 1. Assume n ≥ 2d + 1 and consider a sum labelling of Ṽ . Then
for any two different edges ei, ej ∈ E holds

ei ∩ ej 6= ∅ ⇒ r∗(ei) 6= r∗(ej).(2)

Proof. Let ei, ej ∈ E with i < j be arbitrarily chosen and suppose
ei ∩ ej 6= ∅, i.e.,

∃k ∈ {2, . . . , d} : vi
k = vj

1, . . . , v
i
d = vj

d−k+1.(3)

Now assume r∗(ei) = r∗(ej). By (3) follows

r∗({vj
d−k+2, . . . , v

j
d}) = r∗({vi

1, . . . , v
i
k−1}).(4)

The structure of Ĉd
n implies

∃ep ∈ E : ep ∩ ej = {vj
d−k+2 = vp

1 , . . . , v
j
d = vp

k−1}
and by (4) we obtain

r∗(ep) = r∗({vj
d−k+2, . . . , v

j
d, v

p
k, . . . , v

p
d}) = r∗({vi

1, . . . , v
i
k−1, v

p
k, . . . , v

p
d}).

The condition n ≥ 2d + 1 provides ei ∩ ep = ∅. Moreover vp
d and vi

1 are not
consecutive vertices vµ, vµ+1 in (1). Hence |{vi

1, . . . , v
i
k−1, v

p
k, . . . , v

p
d}| = d

and {vi
1, . . . , v

i
k−1, v

p
k; . . . , v

p
d} 6∈ E , a contradiction to the sum hypergraph

property which proves (2).

Lemma 2. For the sum number of strong hypercycles holds

σ(Ĉd
n) ≥ d for n ≥ 2d + 1.(5)

Proof. Consider in a sum labelling of Ĉd
n ∪ Y the vertex vmax =

max{v1, . . . , vn}. There are d pairwise distinct edges e′i ∈ E with vmax ∈
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e′i; i = 1, . . . , d. This yields R = {r∗(e′i) : i = 1, . . . , d} ⊆ Y and by
Lemma 1 follows |R| = d. Hence σ(Ĉd

n) = |Y | ≥ d.

Our aim is to show that equality holds in (5). For this purpose we assume
Y = {y1, . . . , yd} and define the following vertex labelling:

vi =

{
i, for i = 1, . . . , d,

r∗(ei−d), for i = d + 1, . . . , n,
(6)

yd−k = r∗(en−k), for k = 0, . . . , d− 1.

The next step is to show that labelling (6) and the sum hypergraph property
generate only edges contained in the set E of (1).

Lemma 3. Suppose that the vertex set V ∪{y1, . . . , yd} of Ĉd
n∪Y is labelled

according to (6) and let k ∈ {0, . . . , d− 1} be arbitrarily chosen. Then

∀ M ⊆ V : r∗(M) = yd−k ∧ |M | = d ⇒ M = en−k,(7)

∀ M ⊆ V ∪Y : r∗(M) = yd−k ∧ |M | = d∧n ≥ 2d+1 ⇒ M ∩Y = ∅.(8)

Proof. 1. To prove (7) we use the notation en−k = L ∪ F with L =
{vn−k, . . . , vn} and F = {v1, . . . , vd−k−1}. First we show

L ⊆ M.(9)

Assume there is a vn−j 6∈ M, j ∈ {0, . . . , k}. Then (6) and |M | = d yield

r∗(M) ≤ r∗(L \ {vn−j}) + r∗({vn−k−1, . . . , vn−d}).(10)

We define R := {vn−k−1, . . . , vn−d} and consider two cases:

Case 1. If k ∈ {1, . . . , d − 1} it follows |R| = d − k < d and therefore
r∗(R) < vn−j . Using (10) we obtain

r∗(M) < r∗(L) ≤ r∗(en−k),

a contradiction to r∗(M) = yd−k = r∗(en−k).

Case 2. If k = 0 then j = 0, L \ {vn−j} = ∅ and R = en−d. Hence
by (10)

r∗(M) ≤ 0 + r∗(en−d) = vn < min{y1, . . . , yd}
which contradicts r∗(M) = yd−k = yd.
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Thus we have a contradiction for each k ∈ {0, . . . , d−1} and (9) is true, i.e.,

r∗(M \ L) = r∗(en−k)− r∗(L) = r∗(F ).(11)

Because of |M \ L| = |F | it follows with (6) and (11) that only M \ L = F
is possible. Hence M = L ∪ F = en−k and (7) is shown.

2. To prove (8) we first suppose |M ∩ Y | ≥ 2. This yields

r∗(M) ≥ 2vn = vn +(vn−1+ . . .+vn−d) = y1+vn−d > y1 = max{y1, . . . , yd},

a contradiction to r∗(M) = yd−k. Hence we know that

|M ∩ Y | ≤ 1(12)

must be fulfilled. Now suppose that (8) is not true, i.e.,

∃ M ⊆ V ∪ Y ∃ i ∈ {1, . . . , d− 1} :
r∗(M) = yd−i ∧ |M | = d ∧ n ≥ 2d + 1 ∧ M ∩ Y 6= ∅.

Using (12) this implies

∃ j ∈ {0, . . . , d− 2} ∃ M ′ ⊆ V : yd−i = yd−j + r∗(M ′)∧ |M ′| = d− 1.(13)

By (6) and (13) follows r∗(M ′) = r∗(en−i)− r∗(en−j), i.e.,

r∗(M ′) = r∗({vn−i, . . . , vn−j−1})− r∗({vd−i, . . . , vd−j−1}).(14)

Hence there must be a vertex vn−k ∈ {vn−i, . . . , vn−j−1} with vn−k 6∈
M ′. Using |M ′| = d − 1 and (14) it follows that the number vn−k −
r∗({vd−i, . . . , vd−j−1}) is not greater than the sum of the labels of at most
d − (i − j) vertices vp with p < n − i. Observe that

∑d−i+j
k=1 vn−i−k is the

largest sum of this kind. Now consider the number

µ := vn−i − r∗({vd−i, . . . , vd−j−1}) ≤ vn−k − r∗({vd−i, . . . , vd−j−1}).

In the following we generate a contradiction to (13) by showing that

µ−
d−i+j∑

k=1

vn−i−k > 0(15)

is fulfilled. With vn−i =
d∑

k=1
vn−i−k, n ≥ 2d + 1 and i > j we obtain
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µ−
d−i+j∑

k=1

vn−i−k = (
d∑

k=d−i+j+1

vn−i−k)− r∗({vd−i, . . . , vd−j−1})

≥ (
d∑

k=d−i+j+1

v(2d+1)−i−k)− r∗({vd−i, . . . , vd−j−1})

= (
i−j∑

k=1

vd−k−j+1)− r∗({vd−i, . . . , vd−j−1})

= r∗({vd−i+1, . . . , vd−j})− r∗({vd−i, . . . , vd−j−1})
= vd−j − vd−i > 0.

Hence (15) is true and assertion (8) is proved.

Observe that assertion (8) in Lemma 3 cannot be proved if n < 2d + 1;
a simple calculation shows that inequality (15) is not true in this case.
Indeed, for instance for n = 8 and d = 4 the labelling (6) yields V =
{1, 2, 3, 4, 10, 19, 36, 69} and Y = {134, 125, 108, 75} which is not a sum la-
belling of Ĉ4

8 ∪ Y because 2 + 3 + 4 + 125 = 134 ∈ Y but {2, 3, 4, 125} 6∈ E .
Now we can formulate the main result of this section.

Theorem 4. For d ≥ 2 and n ≥ 2d + 1 the sum sumber of the strong
hypercycle Ĉd

n is given by

σ(Ĉd
n) = d.(16)

Proof. Let d ≥ 2 and n ≥ 2d+1. Lemma 2 shows σ(Ĉd
n) ≥ d. The labelling

(6) is a vertex labelling of Ĉd
n ∪ {y1, . . . , yd} which generates all edges of the

strong hypercycle Ĉd
n. Finally Lemma 3 yields that (6) is a sum labelling of

Ṽ and this completes the proof.

3 Strong Hypercycles With at Most 2d Vertices

The sum numbers for cycles Cn = Ĉ2
n, n ≥ 3 are given in Harary [4] by

σ(Cn) =

{
2, if n 6= 4,
3, if n = 4.

(17)
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Theorem 4 generalizes (17) for n ≥ 5 and the next result shows that this
generalization is also possible for n = 3.

Theorem 5. For d ≥ 2 and n = d + 1 the sum number of the strong
hypercycle Ĉd

n is given by

σ(Ĉd
d+1) = d.(18)

Proof. From n = d + 1 follows that any two different edges ei, ej ∈ E have
exactly d− 1 vertices in common. Hence (2) is true in this case too, i.e.,

∀ ei, ej ∈ E : i 6= j ⇒ r∗(ei) 6= r∗(ej),

and by analogy with the proof of Lemma 2 we obtain σ(Ĉd
d+1) ≥ d. For d = 2

we obtain equality by (17), for instance with the labelling V = {1, 10, 11},
Y = {21, 12}. To show equality for d ≥ 3 we use labelling (6); because
n = d+1 it suffices to prove, that any edge generated by the sum hypergraph
property contains only vertices of V , i.e.,

∀ M ⊆ V ∪ Y : r∗(M) ∈ V ∪ Y ∧ |M | = d ⇒ M ∩ Y = ∅.(19)

Assuming the contrary we observe that (12) from the proof of Lemma 3 is
also true for n = d + 1. Hence

∃ v′1, . . . , v
′
d−1 ∈ V ∃ y′ ∈ Y : |{v′1, . . . , v′d−1}| = d− 1 ∧ y′ +

d−1∑

j=1

v′j ∈ Y.

Using d ≥ 3, n = d + 1 and (6) we obtain

y′+
d−1∑

j=1

v′j ≥ yd+
d−1∑

j=1

j ≥ yd+
3(d− 1)

2
> yd+(d−1) = y1 = max{y1, . . . , yd},

a contradiction. Thus (19) holds and the proof is completed.

Summarizing the results we see that equalities (16) and (18) generalize the
result (17) for cycles Cn with n 6= 4. In the following we discuss the rema-
ining cases d+2 ≤ n ≤ 2d for strong hypercycles Ĉd

n. These cases correspond
to the cycle C4 in (17).

Consider a hypergraph H = (V, E) and a labelling of V ∪ Y such that
H ∪ Y is a sum hypergraph. By analogy with Miller et al. [6] a vertex
v ∈ V ∪ Y is said to be a working vertex iff its label corresponds to an edge
e ∈ E . Hypergraphs which can only be labelled in such a way that all the
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working vertices are isolates belonging to Y are called exclusive. Sharary [7]
shows that the graph C4 is exclusive; this fact is generalized by the following
result.

Theorem 6. The strong hypercycle Ĉd
n is exclusive iff d + 2 ≤ n ≤ 2d.

Proof. Theorems 4 and 5 show that Ĉd
n is not exclusive for n ≥ 2d + 1 and

n = d + 1, respectively. In the following assume that d + 2 ≤ n ≤ 2d and
consider an arbitrary sum labelling of V ∪ Y . It remains to show that

∀ e ∈ E : r∗(e) ∈ Y.(20)

1. Suppose (20) is false; then M = {e ∈ E : r∗(e) ∈ V } 6= ∅. Choose
ê = {v̂1, . . . , v̂d} ∈ M such that

r∗(ê) = min
e∈M

r∗(e).(21)

Observe that ê is not necessary uniquely determined. In this case we consider
M ′ ⊆ M with M ′ = {e ∈ M : r∗(e) = r∗(ê)}. If dCn denotes the distance
function in the graph Cn (where the edges of Cn = Ĉ2

n are denoted according
to (1)) and vmax = max

v∈V
v choose ê such that additionally to (21) holds

dCn(ê, vmax) = min
e∈M ′ dCn(e, vmax),(22)

where dCn(e, vmax) := min
v∈e

dCn(v, vmax).

Obviously, vmax 6∈ ê, thus dCn(ê, vmax) ≥ 1.

2. Let ṽ ∈ V be the vertex with ṽ = r∗(ê). Clearly,ṽ 6∈ ê and with n ≤ 2d
follows the existence of an edge e′ ∈ E , such that ṽ, vmax ∈ e′ and ṽ is a
border vertex of e′, i.e., ṽ has only one neighbour in Cn that belongs to e′

in Ĉd
n. Obviously, y′ := r∗(e′) ∈ Y .

Now consider an edge e′′ ∈ E with |e′ ∩ e′′| = d − 1 and ṽ 6∈ e′′. By n ≤ 2d
we obtain

e′′ = {e′ \ {ṽ}} ∪ {v̂j}; j ∈ {1, . . . , d}.(23)

In part 3 of this proof we will show that

y′′ := r∗(e′′) ∈ Y(24)
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is fulfilled. Then, using (23) and (24) it follows for y′, y′′ ∈ Y :

y′ = r∗(e′) = r∗(e′′) + ṽ − v̂j = y′′ + (
d∑

i=1

v̂i)− v̂j = y′′ +
d∑

i=1
i 6=j

v̂i ∈ Y

but {y′′, v̂1, . . . , v̂j−1, v̂j+1, . . . , v̂d} 6∈ E , a contradiction. Hence (20) must be
true and it is only left to prove (24).

3. If ṽ 6= vmax then e′ is uniquely determined, vmax ∈ e′′ and therefore (24)
is true.

In the following assume ṽ = vmax. Then n ≥ d + 2 implies that e′ can be
chosen in such a way, that e′′ 6= ê. Further by (21) follows

∀ e ∈ M : r∗(e) = r∗(ê) = vmax.(25)

Hence (24) is proved by showing that

r∗(ê) 6= r∗(e′′)(26)

is fulfilled. Clearly, if dCn(ê, vmax) > 1 it follows by dCn(e′′, vmax) = 1 and
(22) that (26) is true.

For clarity we summarize the conditions for the remaining case:

vmax = ṽ = r∗(ê); ê 6= e′′; dCn(ê, vmax) = dCn(e′′, vmax) = 1.

Without loss of generality we can use the following notation (see (1)):

v1 = vmax ; e′′ = {v2, . . . , vd+1} ; ê = {vn−d+1, . . . , vn}.

Observe that e′′ \ ê = {v2, . . . , vn−d} and ê \ e′′ = {vd+2, . . . , vn}; further
n ≤ 2d yields e′′ ∩ ê = {vn−d+1, . . . , vd+1} 6= ∅.
Now assume r∗(e′′) = r∗(ê) and consider e1 = {v1 = vmax, v2, . . . , vd}.
Obviously y1 := r∗(e1) ∈ Y . We distinguish two cases:

Case 1. If d + 2 ≤ n ≤ 2d− 1 we obtain n− d + 1 ≤ d and

y1 = v1 + (v2 + . . . + vn−d) + vn−d+1 + . . . + vd

= v1 + (vd+2 + . . . + vn) + vn−d+1 + . . . + vd ∈ Y.

This is a contradiction because |{vn−d+1, . . . , vd, vd+2, . . . , vn, v1}| = d but
{vn−d+1, . . . , vd, vd+2, . . . , vn, v1} 6∈ E .



264 H.-M. Teichert

Case 2. If n = 2d then v1 = vmax = r∗(ê) = r∗({vd+1, . . . , vn}) yields

y1 = v1 +
d∑

k=2

vk =
n∑

k=d+1

vk +
d∑

k=2

vk =
n∑

k=2

vk ∈ Y.(27)

Observe that d = 2 is not possible because r∗(e′′) = r∗(ê) would imply v2 =
v4 in that case; hence d ≥ 3. We consider the edge e3 = {v3, . . . , vd+2} 6= ê.
By |e′′ ∩ e3| = d − 1 follows r∗(e3) 6= r∗(e′′) = vmax; using (25) this yields
y3 := r∗(e3) ∈ Y . Furthermore n ≥ d + 2 implies v1 6∈ e3 and with (27) we
obtain

y1 =
n∑

k=2

vk = v2+(v3+. . .+vd+2)+vd+3+. . .+vn = v2+y3+vd+3+. . .+vn ∈ Y.

This is a contradiction because |{y3, v2, vd+3, . . . , vn}| = d but {y3, v2,
vd+3, . . . , vn} 6∈ E .
Summarizing the results of both cases we have shown (26) and the proof is
completed.

Looking at Theorem 6 one may conjecture that σ(Ĉd
n) > d for d+2 ≤ n ≤ 2d;

formula (17) shows that this is true for the graph C4. On the other hand
we observe that Lemma 1 ist not true for d+2 ≤ n ≤ 2d and this fact could
be a reason for decreasing sum numbers. Indeed, for d = 3 we obtain the
following result.

Theorem 7. For 3-uniform strong hypercycles with 5 or 6 vertices the sum
numbers are given by

σ(Ĉ3
5) = 3 ; σ(Ĉ3

6) = 2.

Proof. Obviously, if for two different edges ei, ej ∈ E holds r∗(ei) = r∗(ej)
then |ei ∩ ej | ≤ d − 2. Therefore, if p denotes the maximum number of
pairwise distinct edges e′1, . . . , e′p with r∗(e′1) = . . . = r∗(e′p), we have p ≤ n

2 .
By |E| = n follows σ(Ĉ3

5) ≥ 3 and σ(Ĉ3
6) ≥ 2 and we obtain equality by using

the sum labellings given below:

(v1, . . . , vn; y1, . . . , yσ) =

{
(1, 10, 6, 5, 11; 17, 21, 22), if n = 5,

(1, 10, 95, 6, 5, 100; 106, 111), if n = 6.

We do not know the exact values of σ(Ĉd
n) for d ≥ 4 and d + 2 ≤

n ≤ 2d. For instance the labelling (v1, . . . , v6; y1, . . . , y3) = (1, 100, 4, 6,
95, 9; 111, 114, 205) yields σ(Ĉ4

6) ≤ 3.
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Conjecture. σ(Ĉd
n) < d for d ≥ 4 and d + 2 ≤ n ≤ 2d.
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