DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory  17(2) (1997) 229-241
DOI: https://doi.org/10.7151/dmgt.1050

ON THE COST CHROMATIC NUMBER OF OUTERPLANAR, PLANAR, AND LINE GRAPHS


John Mitchem
Patrick Morriss
and
Edward Schmeichel

Department of Mathematics & Computer Science
San Jose State University, San Jose, California 95192

Abstract

We consider vertex colorings of graphs in which each color has an associated cost which is incurred each time the color is assigned to a vertex. The cost of the coloring is the sum of the costs incurred at each vertex. The cost chromatic number of a graph with respect to a cost set is the minimum number of colors necessary to produce a minimum cost coloring of the graph. We show that the cost chromatic number of maximal outerplanar and maximal planar graphs can be arbitrarily large and construct several infinite classes of counterexamples to a conjecture of Harary and Plantholt on the cost chromatic number of line graphs.

Keywords: cost coloring, outerplanar, planar, line graphs.

1991 Mathematics Subject Classification: Primary 05C15, Secondary 05C10.

References

[1] P. Erdős, E. Kubicka and A. Schwenk, Graphs that Require Many Colors to Achieve Their Chromatic Sum, Congressus Numerantium 71 (1990) 17-28.
[2] S. Fiorini and R.J. Wilson, Edge-colorings of Graphs (Pitman, 1977).
[3] M. Gionfriddo, F. Harary and Zs. Tuza, The Color Cost of a Caterpillar, Discrete Mathematics, to appear.
[4] H. Izbicki, Zulässige Kantenfärbungen von Pseudo-Regulären Graphen mit Minimaler Kantenfarbenzahl, Monatsh. Math. 67 (1963) 25-31, doi: 10.1007/BF01300678.
[5] E. Kubicka, The Chromatic Sum of a Graph (Ph.D. Dissertation, Western Michigan University, 1989).
[6] E. Kubicka, Constraints on the Chromatic Sequence for Trees and Graphs, Congressus Numerantium 76 (1990) 219-230.
[7] E. Kubicka, G. Kubicka and D. Kountanis, Approximation Algorithms for the Chromatic Sum, in: Proceedings 1st Great Lakes Computer Science Conference, Michigan, October 1989 (Springer-Verlag LNCS 507, 15-21).
[8] E. Kubicka and A.J. Schwenk, An Introduction to Chromatic Sum, in: Proceedings 17th ACM Computer Science Conference 1989, 39-45.
[9] J. Mitchem and P. Morriss, On the Cost-Chromatic Number of Graphs, Discrete Mathematics 171 (1997) 201-211, doi: 10.1016/S0012-365X(96)00005-2.
[10] S. Nicoloso, M. Sarrafzadeh and X. Song, On the Sum Coloring Problem on Interval Graphs, Consiglió Nazionale Delle Ricerche, Instituto Di Analisi Dei Sistemi Ed Informatica, October 1994.
[11] K. Supowit, Finding a Maximum Planar Subset of a Set of Nets in a Channel, IEEE Transactions on Computer Aided Design, CAD-6 1 (1987) 93-94.
[12] C. Thomassen, P. Erdős, Y. Alavi, P.J. Malde and A.J. Schwenk, Tight Bounds on the Chromatic Sum of a Connected Graph, Journal of Graph Theory 13 (1989) 353-357, doi: 10.1002/jgt.3190130310.
[13] Zs. Tuza, Contractions and Minimal k-Colorability, Graphs and Combinatorics 6 (1990) 51-59, doi: 10.1007/BF01787480.
[14] Zs. Tuza, Problems and Results on Graph and Hypergraph Colorings, Le Matematiche 45 (1990) 219-238.
[15] Zs. Tuza, Chromatic Numbers and Orientations, February, 1993, unpublished manuscript.
[16] V.G. Vizing, On an Extimate of the Chromatic Class of a p-Graph, Diskret. Analiz 3 (1964) 25-30.
[17] D. West, Open Problems Section, The Siam Activity Group on Discrete Mathematics Newsletter 5 (2) (Winter 1994-95) 9.

Close