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Abstract

We consider vertex colorings of graphs in which each color has an
associated cost which is incurred each time the color is assigned to
a vertex. The cost of the coloring is the sum of the costs incurred
at each vertex. The cost chromatic number of a graph with respect
to a cost set is the minimum number of colors necessary to produce
a minimum cost coloring of the graph. We show that the cost chro-
matic number of maximal outerplanar and maximal planar graphs can
be arbitrarily large and construct several infinite classes of counterex-
amples to a conjecture of Harary and Plantholt on the cost chromatic
number of line graphs.
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1. Introduction

In this paper we consider the problem of coloring a graph as efficiently as
possible when each color has an associated positive rational cost. Supowit
[11] first posed this problem. Independently various subsets of E. Kubicka,
Erdös, Thomassen, Schwenk, Alavi, Malde, G. Kubicka, and Kountanis pub-
lished papers [1], [5], [6], [7], [8], and [12] on a restricted version of this prob-
lem where the costs are the first n positive integers. Recently Nicoloso et.
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al. [10] investigated this restricted cost coloring problem for interval graphs
and discussed its application to VLSI routing. In this paper we continue the
investigation of the general cost coloring problem begun by Mitchem and
Morriss [9]. We give now the formal basic definitions.

For any palette P = {p1, . . . , pn} of colors we have an associated set
Cp = {c1, . . . , cn} of costs where ci is a positive rational number associated
with color pi. Each time that pi is used on a vertex the cost ci is accrued.
Our goal is to color graph G using colors from P so that a minimum total
cost is attained. For convenience we assume that c1 < c2 < . . . < cn. The
cost-chromatic number of G, denoted by χCp(G), with respect to cost set
Cp, is the minimum number of colors necessary to produce a minimum cost
coloring of G. A minimum cost coloring of G with Cp which uses only
χCp(G) colors is called a best coloring. In the special case of cost coloring
studied in [1], [5], [6], [7], [8], [10], and [12] the set Cp is N , the set of positive
integers, and the minimum cost of coloring G is called the chromatic sum.
Other cost coloring papers are [3], [13], [14], and [15].

We will simplify notation by no longer distinguishing between the color
pi and the cost ci. Thus we will have a cost set C = {c1, . . . , cn} of positive
rational numbers which we will also call colors, and the cost of using color ci

on any vertex is ci. Given C, χc(G) denotes the minimum number of colors
from C required to obtain a minimum cost coloring of graph G using C.

2. Outerplanar and Planar Graphs

In [1] it is shown that for any integer n ≥ 2 there is a tree T such that
χN (T ) = n. Mitchem and Morriss extended that result.

Theorem 1 [9]. For any cost set C with n ≥ 2 positive rational numbers
there exists a tree T such that χC(T ) = n.

In this section we prove similar results for maximal outerplanar and maximal
planar graphs. At first consideration these two new results may appear to
be obvious. However, the following two theorems show that cost chromatic
number behaves very differently from chromatic number, and Theorem 1
does not immediately imply its outerplanar and planar analogues.

Theorem 2 [9]. Let C be any cost set of n colors and G be a graph such
that χC(G) = n > χ(G). Then there is a graph G′ with V (G) = V (G′) and
E(G) a subset of E(G′) such that χC(G′) = χ(G).
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Theorem 3 [9]. Let C be any cost set of n ≥ 2 colors and T be any tree
with χC(T ) = n. Then there exists a tree T ′ which contains T such that
χC(T ′) = 2.

Before stating and proving our two main theorems of this section we make
the following observations. The first fact is immediate, and the easy proof
of the second appears in [9].

Fact 4. In any minimum cost coloring of G with cost set C, any vertex v
of color ci, i ≥ 2, has neighbors of all colors c1, . . . , ci−1. Thus if v is colored
ci, then deg(v) ≥ i− 1.

Fact 5. Let C = {c1, . . . , cn} be any cost set of positive rational numbers.
Then there exists a cost set C ′ = {c′1, . . . , c′n} of positive integers such that
for any graph G a best coloring K of G with C corresponds to a best coloring
K ′ of G with C ′ in the following sense: if K colors vertex v of G with ci,
then K ′ colors v with c′i. Furthermore, c′1 may be taken to be equal to 1.

Theorem 6. For any cost set C of n ≥ 2 positive rational numbers, there
exists an outerplanar block B such that χC(B) = n.

Proof. By Fact 5, without loss of generality, we may take C to be a set
of positive integers. The construction of block B = Bn will depend on the
parity of n. Let B2 = K2 and B3 = K3. For t = 4, 5, . . . , n we construct Bt

from Bt−2.
Consider an outerplanar embedding of Bt−2 where v1, v2, . . . , vr, v1 are

its consecutive vertices on the outer border. For i = 1, 2, . . . , r and subscripts
taken modulo r, insert a path from vi to vi+1 with 2(cn+1)r internal vertices
and construct a chord from each of these new vertices to vi. Then Bt is an
outerplanar block.

We state and prove a lemma from which Theorem 6 follows.

Lemma. Let n ≥ j ≥ i ≥ 2 and S be the subset consisting of the j largest
elements of C. Then χS(Bi) = i and any best coloring uses the i smallest
elements of S.

Proof. We use induction on i noting that the lemma is clearly true
for i = 2 and 3. Consider Bi, n ≥ i ≥ 4. Let n ≥ j ≥ i and S =
{cn−j+1, cn−j+2, . . . , cn}. By the induction hypothesis any best coloring of
Bi−2 with S′ = S − {cn−j+1, cn−j+2} uses the i − 2 smallest colors of S′.
Give such a coloring to Bi−2, and alternate colors cn−j+1 and cn−j+2 on
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each path added to Bi−2 to form Bi. This clearly gives a coloring of Bi with
i colors from S.

In order to complete the proof of the lemma it suffices to show that any
coloring using other than i colors from S is more costly than the current
coloring. On the contrary first assume that there is a coloring of Bi using
less than i colors from S which is no more costly than the current coloring.
From the inductive hypothesis it follows that in such a coloring either cn−j+1

or cn−j+2 is used on a vertex of Bi−2, and so it is not used on any interior
vertex of at least one of the paths added to Bi−2 to form Bi. Therefore at
least half of the interior vertices of this path are colored with a color larger
than or equal to cn−j+3 ≥ 1 + cn−j+2. Thus the cost of coloring that path
has increased by at least (cn + 1)r, where r is the number of vertices in
Bi−2. This increase is larger than any possible savings that can accrue to
Bi−2. A similar argument shows that every coloring of Bi using more than
i colors from S is more costly than the current coloring of Bi. Hence our
presumed improved coloring does not exist and the lemma is proved. This
proves Theorem 6.

Theorem 7. For any cost set C with n ≥ 4 colors, there exists a maximal
planar graph G with χC(G) = n.

Proof. By Fact 5, without loss of generality, we can assume that the ele-
ments of C are positive integers. Let G be the maximal planar block formed
by joining a single new vertex v to each vertex of the maximal outerplanar
block Bn−1 described in Theorem 6.

Assume that a best coloring of G with C uses t < n colors. Then that
coloring assigns some color cj , 1 ≤ j ≤ t, to v leaving colors in S = C−{cj}
available for Bn−1. Now by Theorem 6 any best coloring of G − v = Bn−1

with S uses all n− 1 colors. Using this coloring of G− v and color cj on v
yields a better coloring of G than the presumed best one we started with,
a contradiction.

3. Upper Bounds for the Cost Chromatic Number

Given the results from Section 2, it is clear that chromatic number and
cost chromatic number behave quite differently. Since the cost chromatic
number of trees, maximal outerplanar graphs, and maximal planar graphs
can be arbitrarily large, in this section we consider upper bounds for the cost
chromatic number. We state some theorems from [9] and prove additional
bounds.
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Theorem 8 [9]. If G is any graph except an odd cycle or a complete graph
and C is any cost set of n colors, n ≥ χ(G), then χC(G) ≤ ∆(G).

Theorem 9. Let r be the number of vertices in a longest path of graph G.
Then for any cost set C of n ≥ χ(G) colors, χC(G) ≤ r.

Proof. Given any best coloring of G let vt be a vertex colored with the max-
imum color ct. By Fact 4, vt is adjacent to a vertex vt−1 of color ct−1, vt−1

is adjacent to a vertex vt−2 of color ct−2, and so on. Hence χC(G) = t ≤ r.

For trees the bounds given in Theorems 8 and 9 can be substantially reduced.

Theorem 10 [9]. For any cost set C with n ≥ 2 colors and for any tree T
whose longest path has r vertices, χC(T ) ≤ br/2c+ 1. Furthermore for any
C there exists a tree T for which this bound is attained.

Theorem 11 [9]. For any tree T and cost set C with at least 2 colors
χC(T ) ≤ d∆(T )/2e+ 1.

As noted above the bound in Theorem 10 is the best possible. We show now
that the bound in Theorem 11 is the best possible in a weaker sense.

Theorem 12. For any integer n ≥ 0, there exists a tree Tn and cost set C
such that χC(Tn) = n + 1 = d∆(Tn)/2e+ 1.

Proof. Let C = {1, 1.1, 1.11, 1.111, . . .}. For each n ≥ 0, we construct tree
Tn with n + 1 levels, ∆(Tn) = 2n, and χC(Tn) = n + 1. Along with the
construction we give a coloring of Tn with C using n + 1 colors. We show
that the given coloring is the unique best coloring and any other coloring of
Tn with C increases the cost by at least (1/10)n+1.

Let T0 consist of a single vertex colored 1. Let T1 consist of a root
colored 1.1 joined to the roots of 2 colored copies of T0. Tree T2 is formed
by joining a root colored 1.11 with the roots of two colored copies of T0 and
2 colored copies of T1. In general, Tn is defined recursively. It consists of
a root colored 1 + (1/10) + . . . + (1/10)n joined with the roots of 2 colored
copies of each of Tn−1, Tn−2, . . . , T0. Clearly we have an n+1 coloring of Tn

with C, and Tn has n + 1 levels and maximum degree 2n.
We use induction to show that the current coloring is a unique best

coloring and any other coloring of Tn costs at least (1/10)n+1 more than the
given coloring. This is certainly true for n = 0 or 1. Consider tree Tn, n > 1.
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Let the given coloring be denoted by K, and assume that there is a different
coloring K ′ at least as good as K.

Then either K ′(r) ≥ K(r) or K ′(r) < K(r) where r is the root of
Tn. The former cannot occur because, by the induction hypothesis, K is the
unique best coloring of each of the designated subtrees of Tn. Hence K ′ must
color r with a smaller color than K. So K ′(r) = 1+(1/10)+ . . .+(1/10)i <
1 + (1/10) + . . . + (1/10)n = K(r) for some i, 0 ≤ i < n. Let r1, r2 be
adjacent to r and roots of two copies of Ti. Now r1, r2 cannot be colored
with 1 + (1/10) + . . . + (1/10)i, and hence by inductive assumption their
corresponding Ti must both be colored by K ′ in a way that costs at least
(1/10)i+1 more than the cost of coloring Ti by K. Thus K ′(Tn) costs at
least 2(1/10)i+1− (1+(1/10)+ . . .+(1/10)n− (1+(1/10)+ . . .+(1/10)i)) >
(1/10)n+1 more than K(Tn).

Before stating and proving an upperbound for outerplanar graphs analogous
to Theorem 11 we give some notation and a definition. For any vertex
v,N(v) denotes the set of neighbors of v. Given a coloring of G with cost
set C, we say that vertex v in G has missing color cj if neither v nor any
vertex in N(v) has color cj .

Theorem 13. Let G be an outerplanar block and C be any cost set with at
least 3 colors, then χC(G) ≤ d∆(G)/2e+ 3.

Proof. Let t = d∆(G)/2e + 3, and assume that in a best cost coloring G
has a vertex v0 colored ct+1. In order to obtain a contradiction we show the
existence of a path Q : v0, v1, . . . , vr for some positive integer r such that

(i) The subgraph of G induced by V (Q) is the path Q.
(ii) Vertex v1 is the only vertex of its color adjacent to v0.
(iii) For i = 2, 3, . . . , r, vi is the only vertex of its color in N(vi−1)−{vi−2}.
(iv) Vertex vr has a missing color cj for some j ≤ t.

By Fact 4, v0 is adjacent to vertices of every color ci, 1 ≤ i ≤ t. Since
t > ∆(G)/2, there is some color cs which is used on only one neighbor of v0.
Let v1 be the neighbor of v0 colored cs. If v1 has a missing color cj , j ≤ t,
then Q : v0, v1 has the properties i-iv. So we assume that v1 has a neighbor
of each color cj 6= cs, j ≤ t.

Claim A. There exists a vertex v2 in N(v1) − {v0} such that v2 is not
adjacent to v0, and v2 is the only vertex of its color cx, x ≤ t, in N(v1)−{v0}.
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In order to verify Claim A, note that since G is outerplanar, v0 is adjacent
to at most two other neighbors of v1. Thus if A is not true, then deg(v1) ≥
2(t− 3) + 3 > ∆(G), a contradiction. Thus v2 as given in A exists.

If v2 has a missing color cj , 1 ≤ j ≤ t, then Q : v0, v1, v2 has properties
(i) – (iv). Otherwise Q has properties (i) – (iii), and we continue building Q.

Claim B. Suppose thus far that path Q : v0, v1, . . . vr has been found with
properties (i) – (iii), and property (iv) does not hold. Then there is a ver-
tex vr+1 in N(vr) such that vr+1 is not in Q, vr+1 is not adjacent to any
vertex of Q except vr, and vr+1 is the only vertex of its color cy, y ≤ t, in
N(vr)− {vr−1}.
In order to verify B, we note that because G is outerplanar at most 2 vertices
of N(vr)−{vr−1} are adjacent to vertices of Q−{vr}. Since vr has no missing
color, if Claim B is false, then deg(vr) ≥ 2(t−4)+3 > ∆(G), a contradiction.
Thus Claim B is true.

If vr+1 has a missing color, then the Q we require is v0, v1, . . . , vr+1. If
vr+1 has no missing color we apply B again with r replaced by r + 1. Since
graph G is finite we eventually find path Q with properties (i) – (iv).

Recolor V (Q) by moving the color of vi to vi−1, i = 1, . . . , r and using
cj on vr. This results in a proper coloring of G whose cost is reduced by
ct+1−cj > 0. This is a contradiction and completes the proof of the theorem.

4. Line Graphs and a Conjecture of Harary and Plantholt

Earlier we showed that the cost chromatic number of trees, maximal out-
erplanar blocks, and maximal planar graphs can be arbitrarily larger than
their chromatic number. By contrast, in this section we show that for any
line graph the cost chromatic number is at most one more than its chro-
matic number. In fact Harary and Plantholt conjectured that for cost set
N , χN (G) = χ(G) for any line graph G. We give an infinite class of coun-
terexamples to this conjecture.

Let G = L(H) be the line graph of H. Since vertex coloring G is
equivalent to edge coloring H, we will only consider coloring edges of H.
As earlier, C is any set of positive rational numbers. The edge chromatic
number and the cost edge chromatic number of H are respectively denoted
by χ′(H) and χ′C(H). With this notation the Harary-Plantholt Conjecture,
as reported by West [17], is that χ′(H) = χ′N (H) for every graph H.
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By Vizing’s Theorem [16] χ′(H) = ∆(H) or ∆(H) + 1 for every graph H.
Graph H is called Class 1 if χ′(H) = ∆(H) and Class 2 otherwise. We
show that for any graph H and any cost set C, χ′C(H) ≤ ∆(H) + 1. The
proof is very similar to the proof of Vizing’s Theorem given by Fiorini and
Wilson [2]. We include the proof here to emphasize the cost coloring ideas.

Theorem 14. For any graph H and any cost set C of at least ∆(H) + 1
positive rational numbers, χ′C(H) ≤ ∆(H) + 1.

Proof. On the contrary assume that there is a graph H and cost set C
with χ′C(H) = k ≥ ∆(H) + 2. We show that we can find a smaller cost
coloring of H.

By our assumption, in any best edge coloring of H there exists an edge
vw1 of H which is colored ck. Since k ≥ ∆(H) + 2, there are colors which
we will denote by b0 and b1, both smaller than ck, such that b0 is not used
at v and b1 is not used at w1. If b0 = b1, then by recoloring vw1 with b0 we
obtain a smaller cost edge coloring. Thus we conclude b0 6= b1.

For any colors bi and bj let H[bi, bj ] denote the subgraph of H induced
by all edges colored bi or bj . If v and w1 are not in the same component
of H[b0, b1], then let P be the path in H[b0, b1] containing v. Interchange
colors on P and recolor vw1 with b1. This results in a proper edge coloring
of H and reduces the cost by ck − b0 or ck − b1.

Thus v and w1 are in the same component of H[b0, b1]. Let vw2 be the
edge colored b1 adjacent to v. Now since k ≥ ∆(H) + 2, there is some color
b2 < ck and different from b0 and b1, which is not used on any edge incident
with w2. If b2 is not used on an edge incident with v we recolor vw2 with b2

and vw1 with b1. This yeilds a smaller cost edge coloring of H.
Therefore we let vw3 be the edge colored b2 adjacent to v. Now H[b0, b2]

has a component containing v, w2 and w3. Otherwise, interchange the colors
b0 and b2 on the component of H[b0, b2] containing v, recolor vw2 with b2

and vw1 with b1. This yields a proper edge coloring of H and reduces the
cost by either ck − b0 or ck − b2.

We continue similarly finding edges vw1, vw2, . . . , vwj and colors b1, b2,
. . . , bj all smaller than ck where each bi, i = 1, 2, . . . , j is missing at wi and
edge vwi is colored bi−1. Since the graph is finite we eventually find

(i) Edge vwj and color bj such that bj is also missing at v or
(ii) Edge vwj and color bj , such that bj = bi for some i < j − 1.

If (i) occurs, then we obtain a smaller cost coloring by recoloring vwj with
bj , vwj−1 with bj−1, . . . , vw2 with b2 and vw1 with b1.
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If (ii) occurs, then vertices v, wi, and wi+1 are in the same component H ′

of H[bo, bi], for otherwise, as previously an interchange of colors leads to
a smaller cost coloring. Thus H ′ 6= H ′′ where H ′′ is the component of
H[b0, bi] which contains wj . Interchange colors on H ′′. Then recolor vwj

with b0, vwj−1 with bj−2, . . . , vw2 with b2, and vw1 with b1. Hence we have
a smaller cost coloring of G which completes the proof of the theorem.

It follows from Theorem 14 that if H is Class 2, then χ′C(H) = χ′(H) for
any cost set C. Now we exhibit an infinite set of Class 1 graphs for which
χ′N (H) > χ′(H). In order to do that we consider a theorem of Izbicki [4],
which we give without proof, and an immediate corollary.

Theorem 15 (Izbicki). Let H be a Class 1 graph in which every vertex
has either degree ∆(H) or degree 1. For any edge coloring of H with ∆(H)
colors let fi be the number of end edges with color i for i = 1, 2, . . . ,∆(H).
Then all fi have the same parity.

Corollary 16. Let H be Class 1 with all vertices of degree ∆(H) or 1 where
∆(H) is odd. If H has exactly ∆(H) end edges, then any edge coloring of
H with ∆(H) colors has each color used on exactly one end edge.

Corollary 17. Let Hn be the graph formed by adding an end edge to each
vertex of the complete graph Kn. If n is odd, then Hn is Class 1, ∆(Hn) = n,
and any edge coloring of Hn with n colors has each color used on exactly
one end edge.

Proof. When n is odd it is easy to n-color the edges of Kn. Then each
vertex of Kn has a missing color which can be used on its incident end edge.
Thus H is Class 1 and Corollary 17 follows immediately from Corollary 16.

Theorem 18. For odd n ≥ 3, and for any cost set C with n + 1 colors
where cn−1 + cn > c1 + cn+1, we have χ′C(Hn) = n + 1 > χ′(Hn).

Proof. Corollary 17 implies that all edge colorings of Hn with C − (cn+1)
have the same cost. Furthermore each such coloring is a partition of E(Hn)
into n sets where each set has exactly one end edge. So we may consider an
edge coloring of Hn with n colors in which the end edges colored cn−1 and
cn are joined by an edge e of Kn colored c1. Recolor e with cn+1 and the
end edges with c1. This reduces the cost by c1 + cn−1 + cn − (cn+1 + 2c1) =
cn−1 + cn − cn+1 − c1 > 0. Hence χ′C(Hn) = n + 1.
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Corollary 19.
(i) For odd n ≥ 5, χ′N (Hn) > χ′(Hn), and
(ii) For each positive integer m there exists n sufficiently large such that

there exists a (∆ + 1)-coloring of Hn with N which has cost at least
m smaller than any ∆-coloring.

Proof. Let C = N . Part i follows immediatelly from Theorem 18 because
for n ≥ 5, (n−1)+n > (n+1)+1. Part ii follows from the proof of Theorem
18 because for sufficiently large n, (n− 1) + n− (n + 1)− 1 > m.

The counterexamples Hn, given above to the Harary-Plantholt Conjecture,
have minimum degree 1. On the other hand any n-regular Class 1 graph H
has n mutually disjoint perfect matchings. Thus χ′(H) = χ′C(H) for any cost
set C. In Theorem 20, we use Hn to construct additional counterexamples
Hn,m with maximum degree n and minimum degree m, m = 2, 3, . . . , n− 2.
Then in Theorem 21, we construct counterexamples to Harary-Plantholt
which have maximum degree n and minimum degree n− 1.

Theorem 20. For any odd integer n ≥ 5 and m = 2, 3, . . . , n − 2, there
exists a Class 1 graph Hn,m with ∆(Hn,m) = n and δ(Hn,m) = m such that
χ′N (Hn,m) = n + 1.

Proof. Let u1, . . . , un be the endvertices of Hn. We form Hn,m by
adding m − 1 vertices w1, w2, . . . , wm−1 to Hn and joining each wi to
each uj . For m = 2, 3, . . . , n − 2, Hn,m is Class 1. To see this, n-color
the edges of Hn so that the edge ej incident with uj has color j. For
each i = 1, 2, . . . , m − 1, color wiu1, wiu2, . . . , wiun respectively with colors
n− i + 1, n− i + 2, . . . , n, 1, 2, . . . , n− i. This is an n-edge coloring of Hn,m,
and thus Hn,m is Class 1. Furthermore with this coloring color 1 is missing
from both un−1 and un. Also note that all n-edge colorings of Hn,m have
the same cost.

Without loss of generality we may assume that the edge e of Kn which is
incident with en and en−1 is colored 1. We obtain a lower cost edge coloring
by using color n + 1 on e and color 1 on both en and en−1.

Theorem 21. For each r ≥ 2, there exists a graph G′′ such that ∆(G′′) =
2r + 1, δ(G′′) = 2r, χ′N (G′′) = 2r + 2, and χ′(G′′) = 2r + 1.

Proof. As we construct G′′ we also give a minimum cost (2r+1)-coloring of
its edges. We then show that the cost can be reduced by using color 2r + 2.
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It is well known that the edge set of any complete graph of odd order can
be partitioned into mutually disjoint Hamiltonian cycles. For r ≥ 2, we
choose r of these cycles from K4r+1. Let B1 : w1, w2, . . . , w4r+1, w1 be any
Hamiltonian cycle of K4r+1. Let B2, B3, . . . , Br be the other cycles where Br

is the unique Hamiltonian cycle in the partition which contains edge w2w4.
We now (2r + 1)-color the edges of the resulting 2r-regular graph G.

Color the edges w1w2, w2w3, . . . , w4r+1w1 of B1 respectively with 3, 1, 3, 1,
2, 3, 2, 3, . . . , 2. In Br color edge w2w4 with 2 and use colors 2r, 2r+1 on the
other edges of Br. Thus we have a proper edge-coloring of B1 ∪ Br which
has two edges colored 1 and 2r edges of each color 2, 3, 2r, 2r + 1.

Each remaining cycle Bi, i = 2, 3, . . . , r − 1, of G is colored so that one
edge has color 1 and the other edges alternate colors 2i, 2i+1. In coloring Bi,
an edge which is not adjacent to an edge already colored 1 can be selected
for color 1. In order to see this, we note that each of the less than r edges
already colored 1 is adjacent with at most 4 edges of Bi. Since Bi has 4r+1
edges, one of them can be colored 1.

Thus we have edge-colored G with 2r + 1 colors such that r edges are
colored 1 and 2r edges are colored i, i = 2, 3, . . . , 2r + 1. Now form graph
G′ by adding one end edge to each vertex of G. Color each end edge with
the unique color available from 1, 2, . . . , 2r + 1. Thus we have edge-colored
G′ with 2r +1 colors such that the end edges colored 2r and 2r +1 are both
adjacent to edge w2w4 of Br which has color 2.

Hence exactly one end edge of G′ has color i, i = 2, 3, . . . , 2r + 1, and
color 1 is used on 2r + 1 end edges. So in total, G′ has 3r + 1 edges colored
1 and 2r+1 edges colored i, i = 2, 3, . . . , 2r+1. From Theorem 15 it follows
that any edge-coloring of G′ with 2r + 1 colors must use each color at least
2r + 1 times. Hence among all edge-colorings of G′ with 2r + 1 colors, this
one has minimum cost.

We now add vertices and edges to G′ to form G′′ which will have the
required properties. Let E1 be any 2r end edges colored 2, 1, 1, . . . , 1, listed
from left to right. Let E2 be the other 2r + 1 end edges, which are colored
1, 1, 3, 4, . . . , 2r, 2r + 1 and are also listed from left to right.

Let U1 = {u1, . . . , u2r−1} and V1 = {v1, . . . , v2r−1} be disjoint sets of
new vertices which we add to G′. Form the edge u2iu2i+1, i = 1, 2, . . . , r−1,
and color each of these r − 1 edges 1. Also join each ui, i = 1, . . . , 2r − 1,
to each endvertex of the edges of E1. The edges from u1 to E1 (where E1 is
taken in the above order) are colored consecutively 1, 2, . . . , 2r. Similarly the
edges from u2 to E1 are colored consecutively 3, 4, 5, . . . , 2r + 1, 2; the edges
from u3 to E1 are colored consecutively 4, 5, . . . , 2r + 1, 2, 3; and so forth
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until finally the edges from u2r−1 to E1 are colored consecutively 2r, 2r +
1, 2, 3, . . . , 2r − 1.

Now join each vertex of V1 to each endvertex of the edges in E2.
Color the edges from v1 to E2 consecutively (in the order given for E2)
2, 2r + 1, 1, 3, 4, . . . , 2r. Similarly color the edges from v2 to E2 consecu-
tively 2r, 2, 2r + 1, 1, 3, 4, . . . , 2r − 1; the edges from v3 to E2 consecutively
2r−1, 2r, 2, 2r+1, 1, 3, 4, . . . , 2r−2; and so forth until finally the edges from
v2r−1 to E2 are colored consecutively 3, 4, . . . , 2r, 2, 2r + 1, 1.

The resulting graph G′′ satisfies δ(G′′) = 2r, and has been properly
edge-colored with 2r + 1 = ∆(G′′) colors. Furthermore our edge-coloring of
G′′ is a minimum cost Class 1 coloring. In order to see this, recall that our
coloring of G′ has minimum cost. Also note that all vertices added to G′ in
forming G′′ except u1 have degree 2r + 1 and hence must use all colors on
incident edges. The degree of u1 is 2r, and its incident edges use all colors
except 2r + 1. Hence among all colorings of G′′ with 2r + 1 colors, we have
one of minimum cost.

Recall that edge w2w4 is colored 2 and is adjacent to end edges e1 and
e2 of G′ colored 2r and 2r + 1. Furthermore the endvertices in G′ of e1 and
e2 are not incident to any edge colored 2. Hence we can recolor edge w2w4

with 2r +2 and edges e1 and e2 with 2. This reduces the cost of coloring by
4r + 3− (2r + 6) = 2r − 3 > 0. Thus χ′N (G′′) = χ′(G′′) + 1.
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