DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

Y. Caro

Yair Caro

Department of MathematicsUniversity of Haifa- OranimTivon -36006,ISRAEL

email: yacaro@kvgeva.org.il

X. Mifsud

Xandru Mifsud

University of Malta

email: xmif0001@um.edu.mt

Title:

On $(r,c)$-constant, planar and circulant graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 45(2) (2025) 707-723

Received: 2024-03-12 , Revised: 2024-06-14 , Accepted: 2024-06-14 , Available online: 2024-07-03 , https://doi.org/10.7151/dmgt.2551

Abstract:

This paper concerns $(r,c)$-constant graphs, which are $r$-regular graphs in which the subgraph induced by the open neighbourhood of every vertex has precisely $c$ edges. The family of $(r,c)$-graphs contains vertex-transitive graphs (and in particular Cayley graphs), graphs with constant link (sometimes called locally isomorphic graphs), $(r,b)$-regular graphs, strongly regular graphs, and much more. This family was recently introduced in [6], serving as an important tool in constructing flip graphs \cite{caro2023, mifsud2024}. In this paper we shall mainly deals with the following.

Keywords:

planar graphs, circulants

References:

  1. A. Ali, G. Chartrand and P. Zhang, On link-irregular graphs, Discuss. Math. Graph Theory 45 (2025) 95–-110.
    https://doi.org/10.7151/dmgt.2521
  2. J. Anderson, A. Dhawan, and A. Kuchukova, Coloring locally sparse graphs (2024).
    arXiv: 2402.19271
  3. G. Brinkmann and B.D. McKay, Fast generation of planar graphs, MATCH Commun. Math. Comput. Chem. 58 (2007) 323–357.
  4. A.E. Brouwer, Some locally Kneser graphs (2023).
    arXiv: 2312.02964
  5. A.E. Brouwer and H. Van Maldeghem, Strongly Regular Graphs (Cambridge University Press, Cambridge, 2022).
    https://doi.org/10.1017/9781009057226
  6. Y. Caro, J. Lauri, X. Mifsud, R. Yuster and C. Zarb, Flip colouring of graphs (2023).
    arXiv: 2312.08777
  7. Y. Caro and X. Mifsud, The $(r,c)$-graph database (2024).
    https://rcgraphs.research.um.edu.mt
  8. M. Conder, J. Schillewaert and G. Verret, Parameters for certain locally-regular graphs (2021).
    arXiv: 2112.00276
  9. T. Dobson, A. Malnič and D. Marušič, Symmetry in Graphs (Cambridge University Press, Cambridge, 2022).
    https://doi.org/10.1017/9781108553995
  10. I. Fabrici and T. Madaras, The structure of $1$-planar graphs, Discrete Math. 307 (2007) 854–865.
    https://doi.org/10.1016/j.disc.2005.11.056
  11. F. Harary, Graph Theory (3rd Ed.) (Addison-Wesley Publishing Company, 1972).
  12. J. Lauri and R. Scapellato, Topics in Graph Automorphisms and Reconstruction (2nd Ed.) (Cambridge University Press, Cambridge, 2016).
    https://doi.org/10.1017/CBO9781316669846
  13. B.D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014) 94–112.
    https://doi.org/10.1016/j.jsc.2013.09.003
  14. X. Mifsud, Flip colouring of graphs II (2024).
    arXiv: 2401.02315
  15. B.R. Nair and A. Vijayakumar, About triangles in a graph and its complement, Discrete Math. 131 (1994) 205–210.
    https://doi.org/10.1016/0012-365X(94)90385-9
  16. B.R. Nair and A. Vijayakumar, Strongly edge triangle regular graphs and a conjecture of Kotzig, Discrete Math. 158 (1996) 201–209.
    https://doi.org/10.1016/0012-365X(95)00077-A
  17. D. Stevanović, M. Ghebleh, G. Caporossi, A. Vijayakumar and S. Stevanović, Searching for regular, triangle-distinct graphs (2024).
    arXiv: 2401.10971
  18. D.B. West, Introduction to Graph Theory (2nd Ed.) (Prentice Hall, 2001).
  19. Wolfram Research (2007), Graph Data, Wolfram Language function (updated 2023).
    https://reference.wolfram.com/language/ref/GraphData.html
  20. X. Yu, Z. Shao and Z. Li, On the classification and dispersability of circulant graphs with two jump lengths, Available at SSRN (2023).
    https://doi.org/10.2139/ssrn.4589642

Close