DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

D. Boutin

Debra Boutin

Hamilton College

email: dboutin@hamilton.edu

0000-0001-7011-6533

S. Cockburn

Sally Cockburn

email: scockbur@hamilton.edu

L. Keough

Lauren Keough

Grand Valley State University

email: keoulaur@gvsu.edu

S. Loeb

Sarah Loeb

Hampden-Sydney College

email: sloeb@hsc.edu

K.E. Perry

K.E. Perry

Soka University of America

email: kperry@soka.edu

P. Rombach

Puck Rombach

University of Vermont

email: puck.rombach@uvm.edu

Title:

Determining number and cost of generalized Mycielskian graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(1) (2024) 127-150

Received: 2021-04-30 , Revised: 2021-10-27 , Accepted: 2021-10-29 , Available online: 2021-11-17 , https://doi.org/10.7151/dmgt.2438

Abstract:

A set $S$ of vertices is a determining set for a graph $G$ if every automorphism of $G$ is uniquely determined by its action on $S$ and $\det(G)$ is the size of smallest determining set of $G$. A graph $G$ is %said to be $d$-distinguishable if there is a coloring of the vertices with $d$ colors so that only the trivial automorphism preserves the color classes and Dist$(G)$ is the smallest $d$ for which $G$ is $d$-distinguishable. If Dist$(G) = 2$, the cost of $2$-distinguishing, $\rho(G)$, is the size of a smallest color class over all 2-distinguishing colorings of $G$. This paper examines the determining number and, when relevant, the cost of 2-distinguishing for Mycielskians $\mu(G)$ and generalized Mycielskians $\mu_t(G)$ of simple graphs with no isolated vertices. In particular, if $G \neq K_2$ is twin-free with no isolated vertices, then $\det(\mu_t(G)) = \det(G)$. If in addition $\det(G) \geq 2$ and $t\ge \det(G)-1$, then Dist$(\mu_t(G))=2$ and $\rho(\mu_t(G)) = \det(G)$. For $G$ with twins, we develop a framework using quotient graphs to find $\det(\mu(G))$ and $\det(\mu_t(G))$ in terms of $\det(G)$.

Keywords:

determining number, graph distinguishing, cost of 2-distinguishing, Mycielskian graph

References:

  1. A. Mohammed Abid and T.R. Ramesh Rao, Dominator coloring of Mycielskian graphs, Australas. J. Combin. 73 (2019) 274–279.
  2. M.O. Albertson, Distinguishing Cartesian powers of graphs, Electron. J. Combin. 12 (2005) #N17.
    https://doi.org//10.37236/1984
  3. M.O. Albertson and D.L. Boutin, Using determining sets to distinguish Kneser graphs, Electron. J. Combin. 14 (2007) #R20.
    https://doi.org/10.37236/938
  4. M.O. Albertson and K.L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3(1) (1996) #R18.
    https://doi.org/10.37236/1242
  5. S. Alikhani and S. Soltani, Symmetry breaking in planar and maximal outerplanar graphs, Discrete Math. Algorithms Appl. 11 (2019) 1950008.
    https://doi.org/10.1142/S1793830919500083
  6. L. Babai, Asymmetric trees with two prescribed degrees, Acta Math. Acad. Sci. Hungar. 29 (1977) 193–200.
    https://doi.org/10.1007/BF01896481
  7. R. Balakrishnan and S. Francis Raj, Connectivity of the Mycielskian of a graph, Discrete Math. 308 (2008) 2607–2610.
    https://doi.org/10.1016/j.disc.2007.05.004
  8. R. Balakrishnan and S. Francis Raj, Bounds for the $b$-chromatic number of the Mycielskian of some families of graphs, Ars Combin. 122 (2015) 89–96.
  9. B. Bogstad and L.J. Cowen, The distinguishing number of the hypercube, Discrete Math. 283 (2004) 29–35.
    https://doi.org/10.1016/j.disc.2003.11.018
  10. D. Boutin, S. Cockburn, L. Keough, S. Loeb, K.E. Perry and P. Rombach, Distinguishing generalized Mycielskian graphs (2020).
    arXiv: 2006.03739
  11. D. Boutin, S. Cockburn, L. Keough, S. Loeb, K.E. Perry and P. Rombach, Symmetry parameters for Mycielskian graphs, in: Research Trends in Graph Theory and Applications, Assoc. Women Math. Ser. 25, (2021 Springer International Publishing) 96–117.
    https://doi.org/10.1007/978-3-030-77983-2_5
  12. D. Boutin and W. Imrich, The cost of distinguishing graphs, in: Groups, Graphs and Random Walks, London Math. Soc. Lecture Note Ser. 436, (Cambridge Univ. Press, Cambridge 2017) 104–119.
    https://doi.org/10.1017/9781316576571.005
  13. D. Boutin, Identifying graph automorphisms using determining sets, Electron. J. Combin. 13 (2006) #R78.
    https://doi.org/10.37236/1104
  14. D. Boutin, Small label classes in $2$-distinguishing labelings, Ars Math. Contemp. 1 (2008) 154–164.
    https://doi.org/10.26493/1855-3974.31.d93
  15. D. Boutin, The determining number of a Cartesian product, J. Graph Theory 61 (2009) 77–87.
    https://doi.org/10.1002/jgt.20368
  16. D. Boutin, The cost of $2$-distinguishing Cartesian powers, Electron. J. Combin. 20 (2013) #P74.
    https://doi.org/10.37236/3223
  17. D. Boutin, The cost of $2$-distinguishing selected Kneser graphs and hypercubes, J. Combin. Math. Combin. Comput. 85 (2013) 161–171.
  18. X.G. Chen and H.-M. Xing, Domination parameters in Mycielski graphs, Util. Math. 71 (2006) 235–244.
  19. D.C. Fisher, P.A. McKenna and E.D. Boyer, Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski's graphs, Discrete Appl. Math. 84 (1998) 93–105.
    https://doi.org/10.1016/S0166-218X(97)00126-1
  20. W. Imrich, (2007), personal communication.
  21. W. Imrich and S. Klavžar, Distinguishing Cartesian powers of graphs, J. Graph Theory 53 (2006) 250–260.
    https://doi.org/10.1002/jgt.20190
  22. W. Imrich, S. Klavžar and V. Trofimov, Distinguishing infinite graphs, Electron. J. Combin. 14 (2007) #R36.
    https://doi.org/10.37236/954
  23. S. Klavžar and X. Zhu, Cartesian powers of graphs can be distinguished by two labels, European J. Combin. 28 (2007) 303–310.
    https://doi.org/10.1016/j.ejc.2005.07.001
  24. W. Lin, J. Wu, P.C.B. Lam and G. Gu, Several parameters of generalized Mycielskians, Discrete Appl. Math. 154 (2006) 1173–1182.
    https://doi.org/10.1016/j.dam.2005.11.001
  25. J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955) 161–162.
    https://doi.org/10.4064/cm-3-2-161-162
  26. Z. Pan and X. Zhu, Multiple coloring of cone graphs, SIAM J. Discrete Math. 24 (2010) 1515–1526.
    https://doi.org/10.1137/070691486
  27. S.M. Smith, T.W. Tucker and M.E. Watkins, Distinguishability of infinite groups and graphs, Electron. J. Combin. 19 (2012) #P27.
    https://doi.org/10.37236/2283
  28. M. Stiebitz, Beiträge zur Theorie der färbungskritischen Graphen, PhD Thesis (Technical University Ilmenau, 1985).
  29. C. Tardif, Fractional chromatic numbers of cones over graphs, J. Graph Theory 38 (2001) 87–94.
    https://doi.org/10.1002/jgt.1025
  30. N. Van Ngoc, On Graph Colourings, PhD Thesis (Hungarian Academy of Sciences, 1987).
  31. N. Van Ngoc and Zs. Tuza, $4$-chromatic graphs with large odd girth, Discrete Math. 138 (1995) 387–392.
    https://doi.org/10.1016/0012-365X(94)00221-4

Close