DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

N. Bašić

Nino Bašić

University of Primorska

email: nino.basic@famnit.upr.si

0000-0002-6555-8668

P.W. Fowler

Patrick W. Fowler

email: p.w.fowler@sheffield.ac.uk

T. Pisanski

Tomaž Pisanski

University of Primorska, Koper, Slovenia

email: tomaz.pisanski@upr.si

I. Sciriha

Irene Sciriha

University of Malta

email: irene.sciriha-aquilina@um.edu.mt

Title:

On singular signed graphs with nullspace spanned by a full vector: signed nut graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 42(4) (2022) 1351-1382

Received: 2021-01-27 , Revised: 2021-10-14 , Accepted: 2021-10-14 , Available online: 2021-10-25 , https://doi.org/10.7151/dmgt.2436

Abstract:

A signed graph has edge weights drawn from the set $\{+1,-1\}$, and is sign-balanced if it is equivalent to an unsigned graph under the operation of sign switching; otherwise it is sign-unbalanced. A nut graph has a one dimensional kernel of the $0$-$1$ adjacency matrix with a corresponding eigenvector that is full. In this paper we generalise the notion of nut graphs to signed graphs. Orders for which regular nut graphs with all edge weights $+1$ exist have been determined recently for the degrees up to $12$. By extending the definition to signed graphs, we here find all pairs $(\rho,n)$ for which a $\rho$-regular nut graph (sign-balanced or sign-unbalanced) of order $n$ exists with $\rho \le 11$. We devise a construction for signed nut graphs based on a smaller `seed' graph, giving infinite series of both sign-balanced and sign-unbalanced $\rho$-regular nut graphs. Orders for which a regular nut graph with $\rho = n-1$ exists are characterised; they are sign-unbalanced with an underlying graph $K_n$ for which $n\equiv 1 \pmod 4$. Orders for which a regular sign-unbalanced nut graph with $\rho = n - 2$ exists are also characterised; they have an underlying cocktail-party graph CP$(n)$ with even order $n \geq 8$.

Keywords:

signed graph, nut graph, singular graph, graph spectrum, Fowler construction, sign-balanced graph, sign-unbalanced graph, cocktail-party graph

References:

  1. S. Akbari, S.M. Cioabă, S. Goudarzi, A. Niaparast and A. Tajdini, On a question of Haemers regarding vectors in the nullspace of Seidel matrices, Linear Algebra Appl. 615 (2021) 194–206.
    https://doi.org/10.1016/j.laa.2021.01.003
  2. I. Balla, F. Dräxler, P. Keevash and B. Sudakov, Equiangular lines and spherical codes in Euclidean space, Invent. Math. 211 (2018) 179–212.
    https://doi.org/10.1007/s00222-017-0746-0
  3. N. Bašić, P.W. Fowler, T. Pisanski and I. Sciriha, Signed nut graphs (2021).
    https://github.com/UP-LaTeR/signed-nut-graphs
  4. N. Bašić, M. Knor and R.Škrekovski, On $12$-regular nut graphs, Art Discrete Appl. Math.(2021), in press.
    https://doi.org/10.26493/2590-9770.1403.1b1
  5. F. Belardo, S.M. Cioabă, J. Koolen and J. Wang, Open problems in the spectral theory of signed graphs, Art Discrete Appl. Math. 1 (2018) #P2.10.
    https://doi.org/10.26493/2590-9770.1286.d7b
  6. N. Biggs, Algebraic Graph Theory, 2nd Edition (Cambridge University Press, Cambridge, 1993).
    https://doi.org/10.1017/CBO9780511608704
  7. G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of Graphs: A database of interesting graphs, Discrete Appl. Math. 161 (2013) 311–314.
    https://doi.org/10.1016/j.dam.2012.07.018
  8. A.E. Brouwer and W.H. Haemers, Spectra of Graphs (Springer, New York, 2012).
    https://doi.org/10.1007/978-1-4614-1939-6
  9. F.R.K. Chung, Spectral Graph Theory (American Mathematical Society, Providence, RI, 1997).
    https://doi.org/10.1090/cbms/092
  10. K. Coolsaet, P.W. Fowler and J. Goedgebeur, Nut graphs (2018).
    http://caagt.ugent.be/nutgen/
  11. K. Coolsaet, P.W. Fowler and J. Goedgebeur, Generation and properties of nut graphs, MATCH Commun. Math. Comput. Chem. 80 (2018) 423–444.
  12. D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications, 3rd Edition (Johann Ambrosius Barth, Heidelberg, 1995).
  13. D.M. Cvetković, P. Rowlinson and S. Simić, Eigenspaces of Graphs (Cambridge University Press, Cambridge, 1997).
    https://doi.org/10.1017/cbo9781139086547
  14. D.M. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, Cambridge, 2010).
    https://doi.org/10.1017/CBO9780511801518
  15. I. Damnjanović and D. Stevanović, On circulant nut graphs, Linear Algebra Appl. 633 (2022) 127–151.
    https://doi.org/10.1016/j.laa.2021.10.006
  16. F. Ema, M. Tanabe, S. Saito, T. Yoneda, K. Sugisaki, T. Tachikawa, S. Akimoto, S. Yamauchi, K. Sato, A. Osuka, T. Takui and Y. Kobori, Charge-transfer character drives Möbius antiaromaticity in the excited triplet state of twisted $[28]$ hexaphyrin, J. Phys. Chem. Lett. 9 (2018) 2685–2690.
    https://doi.org/10.1021/acs.jpclett.8b00740
  17. P.W. Fowler, Hückel spectra of Möbius $\pi$ systems, Phys. Chem. Chem. Phys. 4 (2002) 2878–2883.
    https://doi.org/10.1039/b201850k
  18. P.W. Fowler, J.B. Gauci, J. Goedgebeur, T. Pisanski and I. Sciriha, Existence of regular nut graphs for degree at most $11$, Discuss. Math. Graph Theory 40 (2020) 533–557.
    https://doi.org/10.7151/dmgt.2283
  19. P.W. Fowler, B.T. Pickup, T.Z. Todorova, M. Borg and I. Sciriha, Omni-conducting and omni-insulating molecules, J. Chem. Phys. 140 (2014) 054115.
    https://doi.org/10.1063/1.4863559
  20. P.W. Fowler, T. Pisanski and N. Bašić, Charting the space of chemical nut graphs, MATCH Commun. Math. Comput. Chem. 86 (2021) 519–538.
  21. J.B. Gauci, T. Pisanski and I. Sciriha, Existence of regular nut graphs and the Fowler construction, Appl. Anal. Discrete Math.(2021), in press.
    https://doi.org/10.2298/aadm190517028g
  22. E. Ghorbani, W.H. Haemers, H.R. Maimani and L.P. Majd, On sign-symmetric signed graphs, Ars Math. Contemp. 19 (2020) 83–93.
    https://doi.org/10.26493/1855-3974.2161.f55
  23. G. Greaves, J.H. Koolen, A. Munemasa and F. Szöllősi, Equiangular lines in Euclidean spaces, J. Combin. Theory Ser. A 138 (2016) 208–235.
    https://doi.org/10.1016/j.jcta.2015.09.008
  24. W.H. Haemers, Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem. 68 (2012) 653–659.
  25. E. Heilbronner, Hückel molecular orbitals of Möbius-type conformations of annulenes, Tetrahedron Lett. 5 (1964) 1923–1928.
    https://doi.org/10.1016/s0040-4039(01)89474-0
  26. R. Herges, Topology in chemistry: Designing Möbius molecules, Chem. Rev. 106 (2006) 4820–4842.
    https://doi.org/10.1021/cr0505425
  27. J.S. Maybee, D.D. Olesky and P. van den Driessche, Partly zero eigenvectors, Linear Multilinear Algebra 28 (1990) 83–92.
    https://doi.org/10.1080/03081089008818033
  28. J.J. McDonald, Partly zero eigenvectors and matrices that satisfy $Au=b$, Linear Multilinear Algebra 33 (1992) 163–170.
    https://doi.org/10.1080/03081089308818190
  29. B.D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014) 94–112.
    https://doi.org/10.1016/j.jsc.2013.09.003
  30. H.S. Rzepa, Möbius aromaticity and delocalization, Chem. Rev. 105 (2005) 3697–3715.
    https://doi.org/10.1021/cr030092l
  31. I. Sciriha, On the construction of graphs of nullity one, Discrete Math. 181 (1998) 193–211.
    https://doi.org/10.1016/s0012-365x(97)00036-8
  32. I. Sciriha, A characterization of singular graphs, Electron. J. Linear Algebra 16 (2007) 451–462.
    https://doi.org/10.13001/1081-3810.1215
  33. I. Sciriha, Coalesced and embedded nut graphs in singular graphs, Ars Math. Contemp. 1 (2008) 20–31.
    https://doi.org/10.26493/1855-3974.20.7cc
  34. I. Sciriha, Maximal core size in singular graphs, Ars Math. Contemp. 2 (2009) 217–229.
    https://doi.org/10.26493/1855-3974.115.891
  35. I. Sciriha and L. Collins, Two-graphs and NSSDs: An algebraic approach, Discrete Appl. Math. 266 (2019) 92–102.
    https://doi.org/10.1016/j.dam.2018.05.003
  36. I. Sciriha and P.W. Fowler, Nonbonding orbitals in fullerenes: Nuts and cores in singular polyhedral graphs, J. Chem. Inf. Model. 47 (2007) 1763–1775.
    https://doi.org/10.1021/ci700097j
  37. I. Sciriha and I. Gutman, Nut graphs: Maximally extending cores, Util. Math. 54 (1998) 257–272.
  38. Z. Stanić, Perturbations in a signed graph and its index, Discuss. Math. Graph Theory 38 (2018) 841–852.
    https://doi.org/10.7151/dmgt.2035
  39. A. Streitwieser, Molecular Orbital Theory for Organic Chemists (Wiley, New York, 1961).
  40. N. Trinajstić, Chemical Graph Theory, 2nd Edition (CRC Press, Boca Raton, FL, 1992).
    https://doi.org/10.1201/9781315139111
  41. T. Yoneda, Y.M. Sung, J.M. Lim, D. Kim and A. Osuka, Pd$^\textrm{ II}$ complexes of $[44]$- and $[46]$ decaphyrins: The largest Hückel aromatic and antiaromatic, and Möbius aromatic macrocycles, Angew. Chem. Int. Ed. 53 (2014) 13169–13173.
    https://doi.org/10.1002/anie.201408506
  42. Z.S. Yoon, A. Osuka and D. Kim, Möbius aromaticity and antiaromaticity in expanded porphyrins, Nature Chemistry 1 (2009) 113–122.
    https://doi.org/10.1038/nchem.172
  43. T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982) 47–74.
    https://doi.org/10.1016/0166-218x(82)90033-6
  44. T. Zaslavsky, Glossary of signed and gain graphs and allied areas, Electron. J. Combin., Dynamic Surveys (1998) #DS9.
    https://doi.org/10.37236/31
  45. T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, Electron. J. Combin., Dynamic Surveys (1998) #DS8.
    https://doi.org/10.37236/29

Close