DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

C. F. Bornstein

Claudson Bornstein

Federal University of Rio de Janeiro

email: cfb@dcc.ufrj.br

G. Morgenstern

Gila Morgenstern

Holon Institute of Technology

email: gilam@hit.ac.il

T. D. Santos

Tanilson Santos

Federal University of Tocantins

email: tanilson.dias@mail.uft.edu.br

U.S. Souza

Ueverton dos Santos Souza

Fluminense Federal University

email: ueverton@ic.uff.br

0000-0002-5320-9209-XX

J. Szwarcfiter

Jayme Szwarcfiter

email: jayme@nce.ufrj.br

Title:

Helly and strong Helly numbers of $B_k$-EPG and $B_k$-VPG graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 43(4) (2023) 1237-1252

Received: 2020-05-15 , Revised: 2021-07-13 , Accepted: 2021-07-14 , Available online: 2021-08-03 , https://doi.org/10.7151/dmgt.2427

Abstract:

EPG graphs were introduced by Golumbic, Lypshteyn, and Stern in 2009 and consist of the intersection graphs of sets of paths on the orthogonal grid, whose intersections are taken considering the edges of the paths. If the intersections of the paths consider the vertices and not the edges, the resulting graph class is called VPG graphs. A path $P$ is a $B_k$-path if it contains at most $k$ bends. $B_k$-EPG and $B_k$-VPG graphs are the intersection graphs of $B_k$-paths on the orthogonal grid, considering the intersection of edges and vertices, respectively. A family $\cal{F}$ is $h$-Helly when every $h$-intersecting subfamily $\cal{F'}$ of it satisfies $core(\cal{F'})\neq\emptyset$. If for every subfamily $\cal{F'}$ of $\cal{F}$, there are $h$ subsets whose core equals the core of $\cal {F'}$, then $\cal {F}$ is said to be {strong} $h$-{Helly}. The Helly number of the family $\cal{F}$ is the least integer $h$, such that $\cal{F}$ is $h$-Helly. Similarly, the strong Helly number of $\cal{F}$ is the least $h$, for which $\cal{F}$ is strong $h$-Helly. In this paper, we solve the problem of determining both the Helly and strong Helly numbers, for $B_k$-EPG, and $B_k$-VPG graphs, for each value $k$.

Keywords:

EPG, VPG, path, grid, bend, Helly number, strong Helly

References:

  1. A. Asinowski, E. Cohen, M.C. Golumbic, V. Limouzy, M. Lipshteyn and M. Stern, String graphs of $k$-bend paths on a grid, Electron. Notes Discrete Math. 37 (2011) 141–146.
    https://doi.org/10.1016/j.endm.2011.05.025
  2. A. Asinowski, E. Cohen, M.C. Golumbic, V. Limouzy, M. Lipshteyn and M. Stern, Vertex intersection graphs of paths on a grid, J. Graph Algorithms Appl. 16 (2012) 129–150.
    https://doi.org/10.7155/jgaa.00253
  3. C. Berge and P. Duchet, A generalization of Gilmore's theorem, in: Recent Advances in Graph Theory, M. Fiedler (Ed(s)), (Acad. Praha, Prague 1975) 49–55.
  4. C.F. Bornstein, M.C. Golumbic, T.D. Santos, U.S. Souza and J.L. Szwarcfiter, The complexity of Helly-$B_{1}$ EPG graph recognition, Discrete Math. Theor. Comput. Sci. 22 (2020) #19.
    https://doi.org/10.23638/DMTCS-22-1-19
  5. M.C. Dourado, M.C. Lin, F. Protti and J.L. Szwarcfiter, Improved algorithms for recognizing $p$-Helly and hereditary $p$-Helly hypergraphs, Inform. Process. Lett. 108 (2008) 247–250.
    https://doi.org/10.1016/j.ipl.2008.05.013
  6. M.C. Dourado, F. Protti and J.L. Szwarcfiter, On the strong $p$-Helly property, Discrete Appl. Math. 156 (2008) 1053–1057.
    https://doi.org/10.1016/j.dam.2007.05.047
  7. M.C. Dourado, F. Protti and J.L. Szwarcfiter, Complexity aspects of the Helly property: graphs and hypergraphs, Electron. J. Combin. (2009) #DS17.
    https://doi.org/10.37236/38
  8. P. Duchet, Proprieté de Helly et problèmes de représentations, Problémes Combinatoires et Théorie de Graphs, Colloquium International CNRS 260 (1978) 117–118.
  9. M.C. Golumbic and R.E. Jamison, The edge intersection graphs of paths in a tree, J. Combin. Theory Ser. B 38 (1985) 8–22.
    https://doi.org/10.1016/0095-8956(85)90088-7
  10. M.C. Golumbic, M. Lipshteyn and M. Stern, Edge intersection graphs of single bend paths on a grid, Networks 54 (2009) 130–138.
    https://doi.org/10.1002/net.20305
  11. M.C. Golumbic, M. Lipshteyn and M. Stern, Single bend paths on a grid have strong Helly number $4$: errata atque emendationes ad ``edge intersection graphs of single bend paths on a grid'', Networks 62 (2013) 161–163.
    https://doi.org/10.1002/net.21509
  12. M.C. Golumbic and G. Morgenstern, Edge intersection graphs of paths on a grid, in: 50 Years of Combinatorics, Graph Theory, and Computing, F. Chung, R. Graham, F. Hoffman, L. Hogben, R. Mullin and D. West (Ed(s)), (Chapman and Hall/CRC 2019) 193–209.
  13. J. Kratochv{\'\i}l, String graphs. II. Recognizing string graphs is NP-hard, J. Combin. Theory Ser. B 52 (1991) 67–78.
    https://doi.org/10.1016/0095-8956(91)90091-W
  14. M. Schaefer, E. Sedgwick and D. Štefankovič, Recognizing string graphs in NP, J. Comput. System Sci. 67 (2003) 365–380.
    https://doi.org/10.1016/S0022-0000(03)00045-X

Close