DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

S. Francis Raj

S. Francis Raj

JRF in Discrete MathematicsSRC, Satra UniversityKumbakonam-612001INDIA

email: francisraj_s@yahoo.com

0000-0001-5407-0520

M. Gokulnath

M. Gokulnath

Pondicherry University

email: gokulnath.math@gmail.com

0000-0002-8819-6102

Title:

b-coloring of the Mycielskian of some classes of graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 42(2) (2022) 363-381

Received: 2019-02-11 , Revised: 2019-10-31 , Accepted: 2019-11-02 , Available online: 2019-12-16 , https://doi.org/10.7151/dmgt.2265

Abstract:

The b-chromatic number $b(G)$ of a graph $G$ is the maximum $k$ for which $G$ has a proper vertex coloring using $k$ colors such that each color class contains at least one vertex adjacent to a vertex of every other color class. In this paper, we have mainly investigated on the b-chromatic number of the Mycielskian of regular graphs. In particular, we have obtained the exact value of the b-chromatic number of the Mycielskian of some classes of graphs. This includes a few families of regular graphs, graphs with $b(G)=2$ and split graphs. In addition, we have found bounds for the b-chromatic number of the Mycielskian of some more families of regular graphs in terms of the b-chromatic number of their original graphs. Also we have found b-chromatic number of the generalized Mycielskian of some regular graphs.

Keywords:

b-coloring, b-chromatic number, Mycielskian of graphs, regular graphs

References:

  1. R. Balakrishnan and S. Francis Raj, Bounds for the b-chromatic number of the Mycielskian of some families of graphs, Ars Combin. 122 (2015) 89–96.
  2. R. Balakrishnan, S. Francis Raj and T. Kavaskar, b-chromatic number of Cartesian product of some families of graphs, Graphs Combin. 30 (2014) 511–520.
    https://doi.org/10.1007/s00373-013-1285-0
  3. R. Balakrishnan, S. Francis Raj and T. Kavaskar, b-coloring of Cartesian product of trees, Taiwanese J. Math. 20 (2016) 1–11.
    https://doi.org/10.11650/tjm.20.2016.5062
  4. R. Balakrishnan and T. Kavaskar, b-coloring of Kneser graphs, Discrete Appl. Math. 160 (2012) 9–14.
    https://doi.org/10.1016/j.dam.2011.10.022
  5. S. Cabello and M. Jakovac, On the b-chromatic number of regular graphs, Discrete Appl. Math. 159 (2011) 1303–1310.
    https://doi.org/10.1016/j.dam.2011.04.028
  6. T. Faik, About the b-continuity of graphs: $($Extended Abstract$)$, Electron. Notes Discrete Math. 17 (2004) 151–156.
    https://doi.org/10.1016/j.endm.2004.03.030
  7. T. Faik, La b-Continuité des b-Colorations: Complexité, Propriétés Structurelles et Algorithmes (PhD Thesis LRI, Univ. Orsay, France, 2005).
  8. P. Francis and S. Francis Raj, On b-coloring of powers of hypercubes, Discrete Appl. Math. 225 (2017) 74–86.
    https://doi.org/10.1016/j.dam.2017.03.005
  9. P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26–30.
    https://doi.org/10.1112/jlms/s1-10.37.26
  10. R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127–141.
    https://doi.org/10.1016/S0166-218X(98)00146-2
  11. M. Jakovac and I. Peterin, The b-chromatic number and related topics–-A survey, Discrete Appl. Math. 235 (2018) 184–201.
    https://doi.org/10.1016/j.dam.2017.08.008
  12. R. Javadi and B. Omoomi, On b-coloring of the Kneser graphs, Discrete Math. 309 (2009) 4399–4408.
    https://doi.org/10.1016/j.disc.2009.01.017
  13. M. Kouider, b-Chromatic Number of a Graph, Subgraphs and Degrees (Res. Rep. 1392 LRI, Univ. Orsay, France, 2004).
  14. M. Kouider and A. El-Sahili, About b-Colouring of Regular Graphs (Res. Rep. 1432 LRI, Univ. Orsay, France, 2006).
  15. M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267–277.
    https://doi.org/10.1016/S0012-365X(01)00469-1
  16. J. Kratochvíl, Zs. Tuza and M. Voigt, On the b-chromatic number of graphs, in: 28th International Workshop WG 2002, (Graph-Theoretic Concepts in Computer Science, Lect. Notes Comput. Sci. 2573 2002) 310–320.
    https://doi.org/10.1007/3-540-36379-3_27
  17. P.C.B. Lam, G. Gu, W. Lin and Z. Song, Some properties of generalized Mycielski's graphs, manuscript.
  18. P.C.B. Lam, G. Gu, W. Lin and Z. Song, Circular chromatic number and a generalization of the construction of Mycielski, J. Combin. Theory Ser. B 89 (2003) 195–205.
    https://doi.org/10.1016/S0095-8956(03)00070-4
  19. J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3 (1955) 161–162.
    https://doi.org/10.4064/cm-3-2-161-162
  20. S. Shaebani, On b-continuity of Kneser graphs of type $KG(2k + 1, k)$, Ars Combin. 119 (2015) 143–147.
  21. D.B. West, Introduction to Graph Theory, Vol. 2 (Prentice-Hall, Englewood Cliffs, 2000).

Close