DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 31(2) (2011) 387-395
DOI: https://doi.org/10.7151/dmgt.1553

Bounds for the Rainbow Connection Number of Graphs

Ingo Schiermeyer

Institut für Diskrete Mathematik und Algebra
Technische Universität Bergakademie Freiberg
09596 Freiberg Germany

Abstract

An edge-coloured graph G is rainbow-connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow-connected. In this paper we show some new bounds for the rainbow connection number of graphs depending on the minimum degree and other graph parameters. Moreover, we discuss sharpness of some of these bounds.

Keywords: rainbow colouring, rainbow connectivity, extremal problem

2010 Mathematics Subject Classification: 05C35, 05C15.

References

[1]J.C. Bermond, On Hamiltonian Walks, Proc. of the Fifth British Combinatorial Conference, Aberdeen, 1975, Utlitas Math. XV (1976) 41--51.
[2]J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008), doi: 10.1007/978-1-84628-970-5.
[3]S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, Proceedings STACS 2009, to appear in J. Combin. Optim.
[4]Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster, On rainbow connection, Electronic J. Combin. 15 (2008) #57.
[5]G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008) 85--98.
[6]G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69--81, doi: 10.1112/plms/s3-2.1.69.
[7]A.B. Ericksen, A matter of security, Graduating Engineer & Computer Careers (2007) 24--28.
[8]A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313--320, doi: 10.7151/dmgt.1547.
[9]M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185--191.
[10]V.B. Le and Z. Tuza, Finding optimal rainbow connection is hard, preprint 2009.

Received 5 January 2010
Revised 14 January 2011
Accepted 17 January 2011


Close