ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2018-2019): c. 84%

Discussiones Mathematicae Graph Theory


Discussiones Mathematicae Graph Theory 21(1) (2001) 137-143
DOI: 10.7151/dmgt.1138


Evelyne Flandrin
Hao Li

LRI, Bât. 490
Université de Paris-Sud
91405 Orsay, France

Antoni Marczyk
Mariusz Woźniak

Faculty of Applied Mathematics AGH
Al. Mickiewicza 30, 30-059 Kraków, Poland


We first show that if a 2-connected graph G of order n is such that for each two vertices u and v such that δ = d(u) and d(v) < n/2 the edge uv belongs to E(G), then G is hamiltonian. Next, by using this result, we prove that a graph G satysfying the above condition is either pancyclic or isomorphic to Kn/2,n/2.

Keywords: hamiltonian graphs, pancyclic graphs, cycles.

2000 Mathematics Subject Classification: 05C38, 05C45.


[1] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-136, doi: 10.1016/0012-365X(76)90078-9.
[3] J.A. Bondy and U.S.A. Murty, Graph Theory with Applications (Elsevier, North Holland, New York, 1976).
[4] V. Chvátal, On Hamilton's ideals, J. Combin. Theory 12 (B) (1972) 163-168.
[5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
[6] G.H. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory (B) 37 (1984) 221-227, doi: 10.1016/0095-8956(84)90054-6.
[7] R. Faudree, O. Favaron, E. Flandrin and H. Li, Pancyclism and small cycles in graphs, Discuss. Math. Graph Theory 16 (1996) 27-40, doi: 10.7151/dmgt.1021.
[8] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.
[9] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5.
[10] Z. Skupień, private communication.
[11] R. Zhu, Circumference in 2-connected graphs, Qu-Fu Shiyuan Xuebao 4 (1983) 8-9.
[12] L. Zhenhong, G. Jin and C. Wang, Two sufficient conditions for pancyclic graphs, Ars Combinatoria 35 (1993) 281-290.

Received 15 November 2000
Revised 13 December 2000