ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2017-2018): c. 84%

Discussiones Mathematicae Graph Theory


Discussiones Mathematicae Graph Theory 20(1) (2000) 23-38
DOI: 10.7151/dmgt.1104


Shannon L. Fitzpatrick

University of Victoria
Victoria, British Columbia

Richard J. Nowakowski

Dalhousie University
Halifax, Nova Scotia


The strong isometric dimension of a reflexive graph is related to its injective hull: both deal with embedding reflexive graphs in the strong product of paths. We give several upper and lower bounds for the strong isometric dimension of general graphs; the exact strong isometric dimension for cycles and hypercubes; and the isometric dimension for trees is found to within a factor of two.

Keywords: isometric, embedding, strong product, injective hull, paths, distance, metric.

1991 Mathematics Subject Classification: 05C12, 05C75.


[1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math. 8 (1984) 1-12. MR 85f:90124.
[2] T. Andreae, On a pursuit game played on graphs for which the minor is excluded, J. Combin. Theory (B) 41 (1986) 37-47. MR 87i:05179.
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs (second edition, Wadsworth, 1986).
[4] S.L. Fitzpatrick, A polynomial-time algorithm for determining if idim(G) ≤ 2,preprint 1998.
[5] S.L. Fitzpatrick and R.J. Nowakowski, Copnumber of graphs with strong isometric dimension two, to appear in Ars Combinatoria.
[6] J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964) 65-76. MR 32#431.
[7] E.M. Jawhari, D. Misane and M. Pouzet, Retracts: graphs and ordered sets from the metric point of view, Contemp. Math. 57 (1986) 175-226. MR 88i:54022.
[8] E.M. Jawhari, M. Pouzet and I. Rival, A classification of reflexive graphs: the use of ``holes", Canad. J. Math. 38 (1986) 1299-1328. MR 88j:05038.
[9] S. Neufeld, The Game of Cops and Robber, M.Sc Thesis, Dalhousie University, 1990.
[10] R. Nowakowski and I. Rival, The smallest graph variety containing all paths, Discrete Math. 43 (1983) 223-234. MR 84k:05057.
[11] R. Nowakowski and I. Rival, A fixed edge theorem for graphs with loops, J. Graph Theory 3 (1979) 339-350. MR 80j:05098.
[12] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Discrete Math. 43 (1983) 235-239. MR 84d:05138.
[13] E. Pesch, Minimal extensions of graphs to absolute retracts, J. Graph Theory 11 (1987) 585-598. MR 89g:05102
[14] A. Quilliot, These d'Etat (Université de Paris VI, 1983).
[15] P. Winkler, The metric structure of graphs: theory and applications (London Math. Soc. Lecture Note Ser., 123, Cambridge Univ. Press, Cambridge-New York, 1987). MR 88h:05090.

Received 30 November 1998
Revised 13 December 1999