ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2018-2019): c. 84%

Discussiones Mathematicae Graph Theory


Discussiones Mathematicae Graph Theory 16(1) (1996) 27-40
DOI: 10.7151/dmgt.1021


Ralph Faudree

Department of Mathematical Sciences, University of Memphis
Memphis, TN 38152, USA

Odile Favaron
Evelyne Flandrin
Hao Li

L.R.I., URA 410 du C.N.R.S. Bât. 490, Université de Paris-sud
91405-Orsay cedex, France.


We first show that if a graph G of order n contains a hamiltonian path connecting two nonadjacent vertices u and v such that d(u)+d(v) ≥ n, then G is pancyclic. By using this result, we prove that if G is hamiltonian with order n ≥ 20 and if G has two nonadjacent vertices u and v such that d(u)+d(v) ≥ n+z, where z = 0 when n is odd and z = 1 otherwise, then G contains a cycle of length m for each 3 ≤ m ≤ max (dC(u,v)+1, [(n+19)/13]), dC(u,v) being the distance of u and v on a hamiltonian cycle of G.

Keywords: cycle, hamiltonian, pancyclic.

1991 Mathematics Subject Classification: 05C38.


[1] D. Amar, E. Flandrin, I. Fournier and A. Germa, Pancyclism in hamiltonian graphs, Discrete Math. 89 (1991) 111-131, doi: 10.1016/0012-365X(91)90361-5.
[2] A. Benhocine and A. P. Wojda, The Geng-Hua Fan conditions for pancyclic or hamilton-connected graphs, J. Combin. Theory (B) 42 (1987) 167-180, doi: 10.1016/0095-8956(87)90038-4.
[3] J.A. Bondy, Pancyclic graphs. I., J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, 1976).
[5] R. Faudree, O. Favaron, E. Flandrin and H. Li, The complete closure of a graph, J. Graph Theory 17 (1993) 481-494, doi: 10.1002/jgt.3190170406.
[6] E.F. Schmeichel and S.L. Hakimi, Pancyclic graphs and a conjecture of Bondy and Chvátal, J. Combin. Theory (B) 17 (1974) 22-34, doi: 10.1016/0095-8956(74)90043-4.
[7] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5.
[8] R.H. Shi, The Ore-type conditions on pancyclism of hamiltonian graphs, personal communication.