DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2017-2018): c. 84%

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory  17(1) (1997)   133-136
DOI: 10.7151/dmgt.1046

ON A CHARACTERIZATION OF GRAPHS BY AVERAGE LABELLINGS

Matúš Harminc

Department of Geometry and Algebra
P.J. Šafárik University
041 54 Košice, Slovakia

Abstract

The additive hereditary property of linear forests is characterized by the existence of average labellings.

Keywords: property of graphs, additive, hereditary, linear forest.

1991 Mathematics Subject Classification: 05C78, 05C75.

References

[1] C. Berge, Graphes et Hypergraphes (Paris, Dunod 1970).
[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A Survey of Hereditary Properties of Graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[3] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed. Advances in Graph Theory (Vishwa International Publication, 1991) 41-68.
[4] D. Gernet, Forbidden and unavoidable subgraphs, Ars Combinatoria 27 (1989) 165-176.
[5] D.L. Greenwell, R.L. Hemminger and J. Klerlein, Forbidden subgraphs, in: Proc. 4th S-E Conf. Combinatorics, Graph Theory and Computing, Utilitas Math. (1973) 389-394.
[6] M. Harminc and R. Soták, Graphs with average labellings, (1996) manuscript.
[7] S. Jezný and M. Trenkler, Characterization of magic graphs, Czechoslovak Math. J. 33 (1983) 435-438.
[8] P. Mihók, On graphs critical with respect to generalized independence numbers, Colloquia Mathematica Societatis János Bolyai-Combinatorics 52 (1987) 417-421.
[9] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150 (1996) 431-435, doi: 10.1016/0012-365X(95)00211-E.