DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2017-2018): c. 84%

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 32(4) (2012) 737-747
DOI: 10.7151/dmgt.1639

On Properties of Maximal 1-planar Graphs

Dávid Hudák, Tomáš Madaras

Institute of Mathematics, Faculty of Sciences
University of P. J. Šafárik
Jesenná 5, 041 54 Košice, Slovak Republic

Yusuke Suzuki

Department of Mathematics, Faculty of Science
Niigata University
8050, Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan

Abstract

A graph is called 1-planar if there exists a drawing in the plane so that each edge contains at most one crossing. We study maximal 1-planar graphs from the point of view of properties of their diagrams, local structure and hamiltonicity.

Keywords: 1-planar graph, maximal graph

2010 Mathematics Subject Classification: 05C10.

References

[1]R. Diestel, Graph Theory (Springer, 2006).
[2]I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs Combin. 13 (1997) 245--250.
[3]I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007) 854--865, doi: 10.1016/j.disc.2005.11.056.
[4]D. Hudák: Štrukt'ura 1-planárnych grafov, Master Thesis, P.J. Šafárik University, Košice, 2009.
[5]V. P. Korzhik, Minimal non-1-planar graphs, Discrete Math. 308 (2008) 1319--1327, doi: 10.1016/j.disc.2007.04.009.
[6]V. P. Korzhik and B. Mohar, Minimal obstructions for 1-immersions and hardness of 1-planarity testing, Springer Lecture Notes in Computer Science 5417 (2009) 302--312, doi: 10.1007/978-3-642-00219-9_29.
[7]B. Mohar, Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory 34 (2000) 170--179, doi: 10.1002/1097-0118(200006)34:2<170::AID-JGT6>3.0.CO;2-P.
[8]J.W. Moon and L. Moser, On hamiltonian bipartite graphs, Israel J. Math 1 (1963) 163--165, doi: 10.1007/BF02759704.
[9]J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997) 427--439, doi: 10.1007/BF01215922.
[10]G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107p--117, doi: 10.1007/BF02996313.
[11]T. Kaiser, D. Král, M. Rosenfeld, Z. Ryjáček and H.-J. Voss: Hamilton cycles in prisms over graphs, http://cam.zcu.cz/∼ryjacek/publications/files/60.pdf.
[12]Y. Suzuki, Re-embeddings of maximum 1-planar graphs, SIAM J. Discrete Math. 24 (2010) 1527--1540, doi: 10.1137/090746835.
[13]W. T. Tutte, A theorem on planar graphs, Trans. Am. Math. Soc. 82 (1956) 99--116, doi: 10.1090/S0002-9947-1956-0081471-8.
[14]H. Whitney, A theorem on graphs, Ann. Math. 32 (1931) 378-?390, doi: 10.2307/1968197.

Received 23 May 2011
Revised 17 January 2012
Accepted 18 January 2012