ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2018-2019): c. 84%

Discussiones Mathematicae Graph Theory


Discussiones Mathematicae Graph Theory 32(1) (2012) 39-45
DOI: 10.7151/dmgt.1584

On Total Vertex Irregularity Strength of Graphs

K. Muthu Guru Packiam

Department of Mathematics
Kalasalingam University
(Kalasalingam Academy of Research and Education)
Krishnankoil -- 626 190, India

Kumarappan Kathiresan

Department of Mathematics
Ayya Nadar Janaki Ammal College
Sivakasi -- 626 124, India


Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.

Keywords: graph labeling, irregularity strength, total assignment, vertex irregular total labeling

2010 Mathematics Subject Classification: 05C78.


[1]D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15--38, doi: 10.1016/S0012-365X(98)00112-5.
[2]M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378--1388,10.1016/j.disc.2005.11.075.
[3]G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187--192.
[4]J.H. Dinitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the m× n grid, J. Graph Theory 16 (1992) 355--374, doi: 10.1002/jgt.3190160409.
[5]A. Gyárfás, The irregularity strength of Km,m is 4 for odd m, Discrete Math. 71 (1988) 273--274, doi: 10.1016/0012-365X(88)90106-9.
[6]S. Jendrol' and M. Tkáč, The irregularity strength of tKp, Discrete Math. 145 (1995) 301--305, doi: 10.1016/0012-365X(94)E0043-H.
[7]KM. Kathiresan and K. Muthugurupackiam, Change in irregularity strength by an edge, J. Combin. Math. Combin. Comp. 64 (2008) 49--64.
[8]KM. Kathiresan and K. Muthugurupackiam, A study on stable, positive and negative edges with respect to irregularity strength of a graph, Ars Combin. (to appear).
[9]Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043--3048, doi: 10.1016/j.disc.2010.06.041.
[10]K. Wijaya, Slamin, Surahmat and S. Jendrol', Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comp. 55 (2005) 129--136.
[11]K. Wijaya and Slamin, Total vertex irregular labelings of wheels, fans, suns and friendship graph, J. Combin. Math. Combin. Comp. 65 (2008) 103--112.

Received 31 July 2010
Revised 11 January 2011
Accepted 12 January 2011