ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2018-2019): c. 84%

Discussiones Mathematicae Graph Theory


Discussiones Mathematicae Graph Theory 30(4) (2010) 555-562
DOI: 10.7151/dmgt.1513


Izolda Gorgol  and  Ewa Łazuka

Department of Applied Mathematics
Lublin University of Technology
Nadbystrzycka 38D, 20-618 Lublin, Poland



A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. For a graph H and a positive integer n, the anti-Ramsey number f(n,H) is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of H. The rainbow number rb(n,H) is the minimum number of colors such that any edge-coloring of Kn with rb(n,H) number of colors contains a rainbow copy of H. Certainly rb(n,H) = f(n,H)+1. Anti-Ramsey numbers were introduced by Erdös et al. [5] and studied in numerous papers.

We show that rb(n,K1,4+e) = n+2 in all nontrivial cases.

Keywords: rainbow number, anti-Ramsey number.

2010 Mathematics Subject Classification: 05C55, 05C35.


[1] N. Alon, On the conjecture of Erdös, Simonovits and Sós concerning anti-Ramsey theorems, J. Graph Theory 7 (1983) 91-94, doi: 10.1002/jgt.3190070112.
[2] M. Axenovich and T. Jiang, Anti-Ramsey numbers for small complete bipartite graphs, Ars Combinatoria 73 (2004) 311-318.
[3] R. Diestel, Graph theory (Springer-Verlag, New York, 1997).
[4] P. Erdös and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51-57.
[5] P. Erdös, A. Simonovits and V. Sós, Anti-Ramsey theorems, in: Infinite and Finite Sets (A. Hajnal, R. Rado, and V. Sós, eds.), Colloq. Math. Soc. J. Bolyai (North-Holland, 1975) 633-643.
[6] I. Gorgol, On rainbow numbers for cycles with pendant edges, Graphs and Combinatorics 24 (2008) 327-331, doi: 10.1007/s00373-008-0786-8.
[7] T. Jiang, Anti-Ramsey numbers for subdivided graphs, J. Combin. Theory (B) 85 (2002) 361-366, doi: 10.1006/jctb.2001.2105.
[8] T. Jiang, Edge-colorings with no large polychromatic stars, Graphs and Combinatorics 18 (2002) 303-308, doi: 10.1007/s003730200022.
[9] T. Jiang and D.B. West, On the Erdös-Simonovits-Sós conjecture about the anti-Ramsey number of a cycle, Combin. Probab. Comput. 12 (2003) 585-598, doi: 10.1017/S096354830300590X.
[10] T. Jiang and D.B. West, Edge-colorings of complete graphs that avoid polychromatic trees, Discrete Math. 274 (2004) 137-145, doi: 10.1016/j.disc.2003.09.002.
[11] J.J. Montellano-Ballesteros, Totally multicolored diamonds, Electronic Notes in Discrete Math. 30 (2008) 231-236, doi: 10.1016/j.endm.2008.01.040.
[12] J.J. Montellano-Ballesteros and V. Neuman-Lara, An anti-Ramsey theorem on cycles, Graphs and Combinatorics 21 (2005) 343-354, doi: 10.1007/s00373-005-0619-y.
[13] I. Schiermeyer, Rainbow 5- and 6-cycles: a proof of the conjecture of Erdös, Simonovits and Sós, preprint (TU Bergakademie Freiberg, 2001).
[14] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286 (2004) 157-162, doi: 10.1016/j.disc.2003.11.057.
[15] M. Simonovits and V. Sós, On restricted colorings of Kn, Combinatorica 4 (1984) 101-110, doi: 10.1007/BF02579162.

Received 29 December 2008
Revised 30 October 2009
Accepted 30 October 2009