ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2017-2018): c. 84%

Discussiones Mathematicae Graph Theory


Discussiones Mathematicae Graph Theory 29(1) (2009) 119-142
DOI: 10.7151/dmgt.1436


Robert Fidytek, Hanna Furmańczyk, Paweł Żyliński

University of Gdańsk
Institute of Computer Science
80-952 Gdańsk, Poland

e-mail: {fidytek,hanna,pz}


The Kneser graph K(n,k) is the graph whose vertices correspond to k-element subsets of set {1,2,…,n} and two vertices are adjacent if and only if they represent disjoint subsets. In this paper we study the problem of equitable coloring of Kneser graphs, namely, we establish the equitable chromatic number for graphs K(n,2) and K(n,3). In addition, for sufficiently large n, a tight upper bound on equitable chromatic number of graph K(n,k) is given. Finally, the cases of K(2k,k) and K(2k+1,k) are discussed.

Keywords: equitable coloring, Kneser graph.

2000 Mathematics Subject Classification: 05C15, 05A18.


[1] A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. 18 (1967) 369-384, doi: 10.1093/qmath/18.1.369.
[2] H. Furmańczyk, Equitable coloring of graphs, in: Graph Colorings, ed. M. Kubale, Contemporary Mathematics 352, AMS, Ann Arbor (2004) 35-53.
[3] H. Hajiabolhassan and X. Zhu, Circular chromatic number of Kneser graphs, J. Combin. Theory (B) 88 (2003) 299-303, doi: 10.1016/S0095-8956(03)00032-7.
[4] A. Johnson, F.C. Holroyd and S. Stahl, Multichromatic numbers, star chromatic numbers and Kneser graphs, J. Graph Theory 26 (1997) 137-145, doi: 10.1002/(SICI)1097-0118(199711)26:3<137::AID-JGT4>3.0.CO;2-S.
[5] M. Kneser, Aufgabe 360, Jahresbericht der Deutschen Mathematiker-Vereinigung 2, Abteilung 58 (1955), pp. 27.
[6] K.W. Lih and D.F. Liu, Circular chromatic numbers of some reduced Kneser graphs, J. Graph Theory 41 (2002) 62-68, doi: 10.1002/jgt.10052.
[7] Z. Lonc, Decompositions of hypergraphs into hyperstars, Discrete Math. 66 (1987) 157-168, doi: 10.1016/0012-365X(87)90128-2.
[8] L. Lovasz, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory (A) 25 (1978) 319-324, doi: 10.1016/0097-3165(78)90022-5.
[9] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920-922, doi: 10.2307/2319405.
[10] A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch Wiskd. III Ser 26 (1978) 454-461.
[11] S. Stahl, n-tuple colourings and associated graphs, J. Combin. Theory (B) 20 (1976) 185-203, doi: 10.1016/0095-8956(76)90010-1.
[12] S. Stahl, The multichromatic numbers of some Kneser graphs, Discrete Math. 185 (1998) 287-291, doi: 10.1016/S0012-365X(97)00211-2.
[13] A. Vince, Star chromatic number, J. Graph Theory 12 (1988), 551-559, doi: 10.1002/jgt.3190120411.

Received 7 December 2007
Revised 9 May 2008
Accepted 9 May 2008