ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2017-2018): c. 84%

Discussiones Mathematicae Graph Theory


Discussiones Mathematicae Graph Theory 28(2) (2008) 219.228
DOI: 10.7151/dmgt.1402


Rangaswami Balakrishnan  and  S. Francis Raj

Srinivasa Ramanujan Centre, SASTRA University
Kumbakonam-612 001, India


The Wiener number of a graph G is defined as [1/2]∑d(u,v), where u,v ∈ V(G), and d is the distance function on G. The Wiener number has important applications in chemistry. We determine the Wiener number of an important family of graphs, namely, the Kneser graphs.

Keywords: Wiener number, Kneser graph, odd graph.

2000 Mathematics Subject Classification: 05C12.


[1] R. Balakrishanan, N. Sridharan and K. Viswanathan, The Wiener index of odd graphs, Indian Inst. Sci. 86 (2006) 527-531.
[2] R. Balakrishanan, K. Viswanathan and K.T. Raghavendra, Wiener index of two special trees, MATCH Commun. Math. Comupt. Chem. 57 (2007) 385-392.
[3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory (Springer, New York, 2000).
[4] N.L. Biggs, Algebraic Graph Theory (Cambridge University Press, London, 1974).
[5] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249, doi: 10.1023/A:1010767517079.
[6] A.A. Dobrynin, I. Gutman, S. Klavžar and P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294, doi: 10.1023/A:1016290123303.
[7] P. Frankl and Z. Furedi, Extremal problems concerning Kneser graphs, J. Combin. Theory (B) 40 (1986) 270-284, doi: 10.1016/0095-8956(86)90084-5.
[8] I. Gutman and O. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986).
[9] H. Hajabolhassan and X. Zhu, Circular chromatic number of Kneser graphs, J. Combin. Theory (B) 881 (2003) 299-303, doi: 10.1016/S0095-8956(03)00032-7.
[10] A. Johnson, F.C. Holroyd, and S. Stahl, Multichormatic numbers, star chromatic numbers and Kneser graphs, J. Graph Theory 26 (1997) 137-145, doi: 10.1002/(SICI)1097-0118(199711)26:3<137::AID-JGT4>3.0.CO;2-S.
[11] K.W. Lih and D.F. Liu, Circular chromatic number of some reduced Kneser graphs, J. Graph Theory 41 (2002) 62-68, doi: 10.1002/jgt.10052.
[12] L. Lovasz, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory (A) 25 (1978) 319-324, doi: 10.1016/0097-3165(78)90022-5.
[13] M. Valencia-Pabon and J.-C. Vera, On the diameter of Kneser graphs, Discrete Math. 305 (2005) 383-385, doi: 10.1016/j.disc.2005.10.001.
[14] S.-P. Eu, B. Yang, and Y.-N Yeh, Generalised Wiener indices in hexagonal chains, Intl., J., Quantum Chem. 106 (2006) 426-435, doi: 10.1002/qua.20732.
[15] S. Stahl, n-tuple coloring and associated graphs, J. Combin. Theory (B) 20 (1976) 185-203, doi: 10.1016/0095-8956(76)90010-1.
[16] S. Stahl, The multichromatic number of some Kneser graphs, Discrete Math. 185 (1998) 287-291, doi: 10.1016/S0012-365X(97)00211-2.
[17] K. Tilakam, Personal communication.
[18] H. Wiener, Structural determination of Paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.
[19] L. Xu and X. Guo, Catacondensed hexagonal systems with large Wiener numbers, MATCH Commun. Math. Comput. Chem. 55 (2006) 137-158.

Received 21 May 2007
Revised 18 February 2008
Accepted 20 February 2008