DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2017-2018): c. 84%

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 26(2) (2006) 193-207
DOI: 10.7151/dmgt.1312

IN-DEGREE SEQUENCE IN A GENERAL MODEL OF A RANDOM DIGRAPH

Zbigniew Palka and Monika Sperling

Department of Algorithmics and Programming
Adam Mickiewicz University
Umultowska 87, 61-614 Poznań, Poland
e-mail: palka@amu.edu.pl
e-mail: dwight@amu.edu.pl

Abstract

A general model of a random digraph D(n,P) is considered. Based on a precise estimate of the asymptotic behaviour of the distribution function of the binomial law, a problem of the distribution of extreme in-degrees of D(n,P) is discussed.

Keywords and phrases: degree sequence, general model of a random digraph.

2000 Mathematics Subject Classification: 05C80, 05C07.

References

[1] B. Bollobás, Degree sequences of random graphs, Discrete Math. 33 (1981) 1-19, doi: 10.1016/0012-365X(81)90253-3.
[2] B. Bollobás, Vertices of given degree in a random graph, J. Graph Theory 6 (1982) 147-155, doi: 10.1002/jgt.3190060209.
[3] P. Erdős and A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hung. 12 (1961) 261-267, doi: 10.1007/BF02066689.
[4] W. Feller, An introduction to Probability and Its Applications, Vol. 1, 2nd ed. (John Wiley, 1957).
[5] G. Ivchenko, On the asymptotic behaviour of degrees of vertices in a random graph, Theory Probab. Appl. 18 (1973) 188-196, doi: 10.1137/1118020.
[6] J. Jaworski and I. Smit, On a random digraph, Annals of Discrete Math. 33 (1987) 111-127.
[7] J. Jaworski and M. Karoński, On the connectivity of graphs generated by a sum of random mappings, J. Graph Theory 17 (1993) 135-150, doi: 10.1002/jgt.3190170203.
[8] J. Jaworski and Z. Palka, Remarks on a general model of a random digraph, Ars Combin. 65 (2002) 135-144.
[9] Z. Palka, Extreme degrees in random graphs, J. Graph Theory 11 (1987) 121-134, doi: 10.1002/jgt.3190110202.
[10] Z. Palka, Rulers and slaves in a random graph, Graphs and Combinatorics 2 (1986) 165-172, doi: 10.1007/BF01788089.
[11] Z. Palka, Asymptotic properties of random graphs, Dissertationes Math. (Rozprawy Mat.) 275 (1988).
[12] Z. Palka, Some remarks about extreme degrees in a random graph, Math. Proc. Camb. Philos. Soc. 3 (1994) 13-26.

Received 9 September 2004
Revised 12 January 2006