DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2017-2018): c. 84%

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 23(2) (2003) 333-363
DOI: 10.7151/dmgt.1206

ON A SPECIAL CASE OF HADWIGER'S CONJECTURE

Michael D. Plummer

Department of Mathematics
Vanderbilt University
Nashville, Tennessee 37240, USA
e-mail: michael.d.plummer@vanderbilt.edu

Michael Stiebitz1

Institute of Mathematics
TU Ilmenau, D-98684 Ilmenau, Germany
e-mail: stieb@mathematik.tu-ilmenau.de

Bjarne Toft2

Department of Mathematics and Computer Science
University of Southern Denmark
Campusvej 55, DK-5230 Odense M, Denmark
e-mail: btoft@imada.sdu.dk

Abstract

Hadwiger's Conjecture seems difficult to attack, even in the very special case of graphs G of independence number α (G) = 2. We present some results in this special case.

Keywords: Hadwiger's Conjecture, complete minor, independence number, connected matching.

2000 Mathematics Subject Classification: 05C15, 05C83.

References

[1]C. Berge, Alternating chain methods: a survey, in: Graph Theory and Computing, ed., R. Read (Academic Press, New York, 1972) 1-13.
[2]S. Brandt, On the structure of dense triangle-free graphs, Combin. Prob. Comput. 8 (1999) 237-245, doi: 10.1017/S0963548399003831.
[3]S. Brandt and T. Pisanski, Another infinite sequence of dense triangle-free graphs, Elect. J. Combin. 5 (1998) #R43 1-5.
[4]P.A. Catlin, Hajós' graph-coloring conjecture: variations and counterexamples, J. Combin. Theory (B) 26 (1979) 268-274, doi: 10.1016/0095-8956(79)90062-5.
[5]G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
[6]G.A. Dirac, Trennende Knotenpunktmengen und Reduzibilität abstrakter Graphen mit Anwendung auf das Vierfarbenproblem, J. Reine Angew. Math. 204 (1960) 116-131, doi: 10.1515/crll.1960.204.116.
[7]P. Duchet and H. Meyniel, On Hadwiger's number and the stability number, Ann. Discrete Math. 13 (1982), 71-74.
[8]T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hung. Acad. 8 (1963) 373-395.
[9]M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979).
[10]H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschrift der Naturf. Gesellschaft in Zürich 88 (1943) 133-142.
[11]J.H. Kim, The Ramsey number R(3,t) has order of magnitude t2/logt, Random Struct. Algorithms 7 (1995) 173-207, doi: 10.1002/rsa.3240070302.
[12]U. Krusenstjerna-Hafstrø m and B. Toft, Some remarks on Hadwiger's Conjecture and its relation to a conjecture of Lovász, in: The Theory and Applications of Graphs: Proceedings of the Fourth International Graph Theory Conference, Kalamazoo, 1980, eds., G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Leśniak-Foster and D.R. Lick (John Wiley and Sons, 1981) 449-459.
[13]L. Lovász and M.D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest and Ann. Discrete Math. 29 (North-Holland, Amsterdam, 1986) 448.
[14]W. Mader, Über trennende Eckenmengen in homomorphiekritischen Graphen, Math. Ann. 175 (1968) 243-252, doi: 10.1007/BF02052726.
[15]J. Pach, Graphs whose every independent set has a common neighbor, Discrete Math. 37 (1981) 217-228, doi: 10.1016/0012-365X(81)90221-1.
[16]N. Robertson, P.D. Seymour and R. Thomas, Hadwiger's conjecture for K6-free graphs, Combinatorica 13 (1993) 279-362, doi: 10.1007/BF01202354.
[17]B. Toft, On separating sets of edges in contraction-critical graphs, Math. Ann. 196 (1972) 129-147, doi: 10.1007/BF01419610.
[18]B. Toft, A survey of Hadwiger's Conjecture, Congr. Numer. 115 (1996) 249-283.

Received 29 September 2001
Revised 13 May 2002


Footnotes:

1Work supported by INTAS (project code 97-1001).
2Work supported by the Danish Natural Science Research Council.