DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

IMPACT FACTOR 2018: 0.741

SCImago Journal Rank (SJR) 2018: 0.763

Rejection Rate (2018-2019): c. 84%

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 24(3) (2004) 431-441
DOI: 10.7151/dmgt.1242

EVEN [a,b]-FACTORS IN GRAPHS

Mekkia Kouider

Laboratoire de Recherche en Informatique
UMR 8623 Bât. 490, Université Paris Sud
91405 Orsay, France

e-mail: km@lri.fr

Preben Dahl Vestergaard

Department of Mathematics
Aalborg University, Fredrik Bajers Vej 7G
DK-9220 Aalborg Øst, Denmark

e-mail: pdv@math.aau.dk

Abstract

Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.

Keywords: even factor, eulerian, spanning subgraph.

2000 Mathematics Subject Classification: 05C70.

References

[1] J. Akiyama and M. Kano, Factors and factorizations of graphs - a survey, J. Graph Theory 9 (1985) 1-42, doi: 10.1002/jgt.3190090103.
[2] A. Amahashi, On factors with all degrees odd, Graphs and Combin. 1 (1985) 111-114, doi: 10.1007/BF02582935.
[3] Mao-Cheng Cai, On some factor theorems of graphs, Discrete Math. 98 (1991) 223-229, doi: 10.1016/0012-365X(91)90378-F.
[4] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory (McGraw-Hill, Inc., 1993).
[5] Y. Cui and M. Kano, Some results on odd factors of graphs, J. Graph Theory 12 (1988) 327-333, doi: 10.1002/jgt.3190120305.
[6] M. Kano, [a,b]-factorization of a graph, J. Graph Theory 9 (1985) 129-146, doi: 10.1002/jgt.3190090111.
[7] M. Kano and A. Saito, [a,b]-factors of a graph, Discrete Math. 47 (1983) 113-116, doi: 10.1016/0012-365X(83)90077-8.
[8] M. Kano, A sufficient condition for a graph to have [a,b]-factors, Graphs Combin. 6 (1990) 245-251, doi: 10.1007/BF01787576.
[9] M. Kouider and M. Maheo, Connected (a,b)-factors in graphs, 1998. Research report no. 1151, LRI, (Paris Sud, Centre d'Orsay). Accepted for publication in Combinatorica.
[10] M. Kouider and M. Maheo, 2 edge-connected [2,k]-factors in graphs, JCMCC 35 (2000) 75-89.
[11] M. Kouider and P.D. Vestergaard, On even [2,b]-factors in graphs, Australasian J. Combin. 27 (2003) 139-147.
[12] Y. Li and M. Cai, A degree condition for a graph to have [a,b]-factors, J. Graph Theory 27 (1998) 1-6, doi: 10.1002/(SICI)1097-0118(199801)27:1<1::AID-JGT1>3.0.CO;2-U.
[13] L. Lovász, Subgraphs with prescribed valencies, J. Comb. Theory 8 (1970) 391-416, doi: 10.1016/S0021-9800(70)80033-3.
[14] L. Lovász, The factorization of graphs II, Acta Math. Acad. Sci. Hungar. 23 (1972) 223-246, doi: 10.1007/BF01889919.
[15] J. Topp and P.D. Vestergaard, Odd factors of a graph, Graphs and Combin. 9 (1993) 371-381, doi: 10.1007/BF02988324.

Received 22 April 2003
Revised 9 October 2003