BLOCK GRAPHS WITH LARGE PAIRED DOMINATION MULTISUBDIVISION NUMBER

Christina M. Mynhardt

Department of Mathematics and Statistics
University of Victoria
Victoria BC, Canada

e-mail: kieka@uvic.ca

AND

Joanna Raczek

Faculty of Applied Physics and Mathematics
Gdańsk University of Technology
ul. Narutowicza 11/12, 80-233 Gdańsk, Poland

e-mail: joanna.raczek@pg.edu.pl

Abstract

The paired domination multisubdivision number of a nonempty graph G, denoted by $\text{msd}_{pr}(G)$, is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that $\text{msd}_{pr}(G) \leq 4$ for all graphs G. We characterize block graphs with $\text{msd}_{pr}(G) = 4$.

Keywords: paired domination, domination subdivision number, domination multisubdivision number, block graph.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

The study of changes that occur in domination-related parameters of a graph when its edges are subdivided\(^1\) was initiated in [11]. If π is a domination-type parameter of G, the smallest number of edges that must be subdivided, where each edge of G can be subdivided at most once, in order to increase π is called

\(^1\)See Section 2 for definitions of terms used in this section.
the \(\pi\)-subdivision number, denoted by \(\text{sd}_\pi(G) \). Subdivision numbers have been studied for the domination number \([6, 11]\), as well as for connected \([4]\), double [1], Roman [10], total [7, 9] and paired domination numbers [5].

Instead of subdividing multiple edges once each, one may wish to subdivide a single edge multiple times. The smallest number of times that a single edge of \(G \) must be subdivided to increase \(\pi \) is called the \(\pi\)-multisubdivision number, denoted by \(\text{msd}_\pi(G) \). Domination and paired domination multisubdivision numbers were studied in [3] and [2], respectively. In particular, it was shown in [2] that the paired domination multisubdivision number \(\text{msd}_{\text{pr}}(G) \) of any graph \(G \) is at most four. For brevity we refer to a graph \(G \) with \(\text{msd}_{\text{pr}}(G) = 4 \) as an msd-4 graph. Msd-4 trees were characterized in [2].

We discuss methods of combining msd-4 graphs to yield new msd-4 graphs and use our results, combined with results from [2], to characterize msd-4 block graphs. Definitions and previous results are given in Section 2. We state the characterization of msd-4 block graphs in Section 3, but defer its proof to Section 6 to allow us to prove a number of results used in the proof; results that apply to general msd-4 graphs are given in Section 4, while results specific to block graphs can be found in Section 5.

2. Definitions and Previous Results

We refer the reader to [8] for domination parameters not defined here. A set \(S \) of vertices of a graph \(G = (V, E) \) without isolated vertices is a paired dominating set of \(G \) if every vertex of \(G \) is adjacent to a vertex in \(S \), and the subgraph \(G[S] \) of \(G \) induced by \(S \) has a perfect matching. If \(u, v \in S \) and there exists a perfect matching \(M \) of \(G[S] \) such that \(uv \in M \), we say that \(u \) and \(v \) are paired in \(S \). The smallest cardinality of a paired dominating set of \(G \) is the paired domination number of \(G \), denoted by \(\gamma_{\text{pr}}(G) \). If \(S \) is a paired dominating set of \(G \) such that \(|S| = \gamma_{\text{pr}}(G) \), we call \(S \) a \(\gamma_{\text{pr}}(G) \)-set, or simply a \(\gamma_{\text{pr}} \)-set if the graph is clear from the context. If \(u \) is a vertex of \(G \) such that \(G - u \) has no isolated vertices and \(\gamma_{\text{pr}}(G - u) < \gamma_{\text{pr}}(G) \) (in which case \(\gamma_{\text{pr}}(G - u) = \gamma_{\text{pr}}(G) - 2 \)), we say that \(u \) is a \(\gamma_{\text{pr}}(G) \)-critical vertex, or simply a \(\gamma_{\text{pr}} \)-critical vertex, and define \(\text{Cr}(G) = \{ u \in V(G) : \text{u is a } \gamma_{\text{pr}} \text{-critical vertex} \} \).

A neighbour of a vertex \(u \in V(G) \) is a vertex adjacent to \(u \). The (open) neighbourhood \(N(u) \) of a vertex \(u \) is the set of all vertices adjacent to \(u \), and its closed neighbourhood is \(N[u] = N(u) \cup \{ u \} \). For a set \(S \subseteq V(G) \), the (open) neighbourhood of \(S \) is \(N(S) = \bigcup_{u \in S} N(u) \), and its closed neighbourhood is \(N[S] = N(S) \cup S \). For a vertex \(u \in S \), the private neighbourhood of \(u \) with respect to \(S \) is the set \(\text{PN}(u, S) = N[u] \setminus N[S \setminus \{ u \}] \). It is possible that \(u \in \text{PN}(u, S) \), but if \(S \) is a paired dominating set, then \(u \) is adjacent to the vertex it is paired with,
so \(u \notin PN(u, S) \) in this case.

An edge \(uv \) of a graph \(G \) is subdivided if it is replaced by a path \((u, x, v) \), where \(x \) is a new vertex, and multisubdivided if it is replaced by a path \((u, x_1, \ldots, x_k, v) \), \(k \geq 2 \), where \(x_1, \ldots, x_k \) are new vertices; we also say that \(uv \) is subdivided \(k \) times. Let \(G_{uv,k} \) denote the graph obtained from \(G \) by subdividing the edge \(uv \) \(k \) times. The paired domination multisubdivision number \(MSD_{pr}(G) \) of a graph \(G \) without isolated vertices is the smallest positive integer \(k \) such that there exists an edge \(uv \) which must be subdivided \(k \) times for \(\gamma_{pr}(G_{uv,k}) \) to exceed \(\gamma_{pr}(G) \). As mentioned above, \(MSD_{pr}(G) \leq 4 \) for all graphs. The three graphs in Figure 1 are all \(MSD_{4} \) graphs; the red vertices form \(\gamma_{pr} \)-sets.

![Figure 1. (a) The spider \(S(2, 2, 6) \) (b) the corona \(K_3 \odot K_1 \) (c) a flared corona \(K_4 \odot^2 K_1 \).](image)

A leaf of a graph is a vertex of degree one, and its neighbour is called a stem.

The following properties of \(MSD_{4} \) graphs were proved in [2].

Theorem 1 [2]. Let \(G \) be an \(MSD_{4} \) graph. Then

(i) each edge of \(G \) belongs to a matching of a minimum paired dominating set of \(G \);

(ii) any leaf of \(G \) is a \(\gamma_{pr} \)-critical vertex;

(iii) each stem is adjacent to exactly one leaf.

The complete bipartite graph \(K_{1,k} \), \(k \geq 2 \), is called a star. Let \(K_{1,k} \) have partite sets \(\{u\} \) and \(\{v_1, \ldots, v_k\} \). The spider \(S(\ell_1, \ldots, \ell_k) \), \(\ell_i \geq 1 \), \(k \geq 2 \), is a tree obtained from \(K_{1,k} \) by subdividing the edge \(uv_i \) \(\ell_i - 1 \) times, \(i = 1, \ldots, k \). Note that \(S(2, 2) \cong P_5 \). See Figure 1(a) for \(S(2, 2, 6) \). The characterization of \(MSD_{4} \) trees in [2] immediately gives the following result.
Proposition 2 [2]. The spider $T = S(2, \ldots, 2)$ satisfies $\text{msd}_{pr}(T) = 4$, and $\text{Cr}(T)$ consists of the leaves of T.

The corona $G \circ K_1$ of a graph G is the graph obtained by joining each vertex of G to a new leaf; $K_3 \circ K_1$ is illustrated in Figure 1(b). A flared corona $G \circ^{st} K_1$ of G is a graph obtained by joining each vertex of G, except one vertex w, to a new leaf, while w is joined to a single vertex of each of $t \geq 1$ copies of K_2. The flared corona $K_3 \circ^{st} K_1$ is depicted in Figure 1(c). The following facts can be verified easily and are stated without proof.

Remark 3.

(i) A corona $K_n \circ K_1$, $n \geq 2$, is an msd-4 graph if and only if n is odd.

(ii) A flared corona $K_n \circ^{st} K_1$, $n \geq 2$, is an msd-4 graph if and only if n is even.

(iii) A vertex of $K_{2n+1} \circ K_1$ or $K_{2n} \circ^{st} K_1$ is pr-critical if and only if it is a leaf (see Theorem 1).

A block of a graph is a maximal connected subgraph with no cut-vertex, and a block graph is a graph, each of whose blocks is a complete graph. Thus, trees are block graphs since each block of a nontrivial tree is a K_2. Evidently, coronas and flared coronas are also block graphs. To characterize msd-4 block graphs, we use spiders $S(2, \ldots, 2)$, coronas $K_{2n+1} \circ K_1$ and flared coronas $K_{2n} \circ^{st} K_1$, combining them by identifying vertices and edges in a prescribed way.

We begin by describing two operations, collectively known as \oplus-operations, for joining disjoint graphs; since the operations can be performed on any graphs, we state them in their most general form. (The operations are well known but we need to define our notation.)

$G_1 \oplus^{u_1u_2} G_2$: Let G_1 and G_2 be vertex disjoint graphs and $u_i \in V(G_i)$ for $i \in \{1, 2\}$. We denote the graph obtained from G_1 and G_2 by identifying u_1 and u_2 into one vertex $u = u_1 = u_2$ by $G_1 \oplus^{u_1u_2} G_2$ (or by $G_1 \oplus^{u_1u_2} G_2$ if the label u is unimportant).

$G_1 \oplus^{e_1e_2} G_2$: Let G_1 and G_2 be vertex disjoint graphs and $e_i = u_iv_i \in E(G_i)$. We denote the graph obtained from G_1 and G_2 by identifying u_1 and u_2 into one vertex $u = u_1 = u_2$, v_1 and v_2 into one vertex $v = v_1 = v_2$, and e_1 and e_2 into one edge $e = uv$ by $G_1 \oplus^{e_1e_2} G_2$ (or by $G_1 \oplus^{e_1e_2} G_2$ if the label e is unimportant).

The graph $G_1 \oplus^{e_1e_2} G_2$, where $G_1 = S(2, 2, 6)$, $G_2 = K_3 \circ K_1$, and $e_i = u_iv_i$ for $i = 1, 2$, is illustrated in Figure 2. Note that u_i is $\text{pr}(G_i)$-critical for $i = 1, 2$, and $u_1 = u_2$ is pr-critical in $G_1 \oplus^{e_1e_2} G_2$. The spider $S(2, 2, 6)$, in turn, is obtained as $H_1 \oplus^{u_1u_2} H_2$, where $H_1 = S(2, 2, 2)$, $H_2 = P_5 = S(2, 2)$, and u_i is a leaf of H_i, $i = 1, 2$.
Figure 2. The graph $S(2, 2, 6) \oplus u_1v_1 u_2v_2 K_3 \circ K_1$.

3. Characterization of msd-4 Block Graphs

We now state our main result — the characterization of msd-4 block graphs. The proof is deferred to Section 6.

Let \mathcal{U} be the collection of all spiders $S(2, \ldots, 2)$, coronas $K_{2n+1} \circ K_1$ and flared coronas $K_{2n} \circ^* K_1$, $n \geq 1$. Define \mathcal{B} to be the family of all block graphs G that can be obtained as a graph G_j, $j \geq 1$, from a sequence G_1, \ldots, G_j of graphs, where $H_1 = G_1 \in \mathcal{U}$, and, if $j > 1$, G_{i+1} can be constructed recursively from G_i by

- adding a graph $H_{i+1} \in \mathcal{U}$,
- choosing vertices $u_1 \in \text{Cr}(G_i)$, $u_2 \in \text{Cr}(H_{i+1})$, and if necessary, $v_1 \in N(u_1)$, $v_2 \in N(u_2)$,
- performing the operation $G_i \oplus u_1v_1 H_{i+1}$ or $G_i \oplus u_1v_1 u_2v_2 H_{i+1}$.

Theorem 4. Let G be a connected block graph. Then G is an msd-4 graph if and only if $G \in \mathcal{B}$. Moreover, if G is an msd-4 graph constructed from the graphs $H_1, \ldots, H_j \in \mathcal{U}$, then $\text{Cr}(G) = \bigcup_{i=1}^j \text{Cr}(H_i)$.

The second statement of Theorem 4 implies that any γ_{pr}-critical vertex v of an msd-4 block graph remains γ_{pr}-critical after the \oplus-operations have been performed any number of times, whether v was identified with another vertex or not. The following corollary of Theorem 4 was proved in [2].

Corollary 5. A tree T is an msd-4 graph if and only if $T \in \mathcal{B}$, that is, if and only if T can be constructed as described, using only spiders $S(2, \ldots, 2)$.

In this section we discuss ways of constructing larger msd-4 graphs from smaller ones. We first prove a useful lemma.

Lemma 6. Let G be a graph with $\text{msd}_{\text{pr}}(G) = 4$. For any edge uv of G, subdivide uv by replacing it with the path (u, x_1, x_2, x_3, v). If D is any $\gamma_{\text{pr}}(G_{uv,3})$-set, then $D \cap \{u, x_1, x_2, x_3, v\} =$

(i) $\{x_1, x_2\}$ or $\{x_2, x_3\}$, or

(ii) $\{u, x_1, v\}$ or $\{u, x_3, v\}$.

If the first part of (i) holds, then u is γ_{pr}-critical, and if the second part of (i) holds, then v is γ_{pr}-critical.

Proof. Let $X = \{x_1, x_2, x_3\}$. To dominate x_2, $X \cap D \neq \emptyset$. We consider three cases.

Case 1. $X \cap D = X$. Without loss of generality assume that x_1 is paired with $u \in D$, and x_2 and x_3 are paired. Then $v \notin D$, otherwise $D \setminus \{x_2, x_3\}$ is also a paired dominating set of $G_{uv,3}$, contradicting the minimality of D. But now $D' = (D \setminus X) \cup \{v\}$ is a paired dominating set of G, which is impossible because $\text{msd}_{\text{pr}}(G) = 4$.

Case 2. $|X \cap D| = 2$. If $X \cap D = \{x_1, x_3\}$, then $\{u, v\} \subseteq D$ with u paired with x_1, and v with x_3. However, then $D \setminus \{x_1, x_3\}$ is a paired dominating set of G, contradicting $\text{msd}_{\text{pr}}(G) = 4$. Suppose $X \cap D = \{x_1, x_2\}$. Then x_1 and x_2 are paired in D. If $\{u, v\} \cap D \neq \emptyset$, then $D \setminus \{x_1, x_2\}$ is a paired dominating set of G, which is a contradiction. Hence $D \cap \{u, x_1, x_2, x_3, v\} = \{x_1, x_2\}$. Now $D' \setminus \{x_1, x_2\}$ is a paired dominating set of $G - u$, so $\gamma_{\text{pr}}(G - u) < \gamma_{\text{pr}}(G_{uv,3}) = \gamma_{\text{pr}}(G)$. We conclude that u is γ_{pr}-critical. Arguing similarly if $X \cap D = \{x_2, x_3\}$, we conclude that (i) and the last part of the statement of the lemma hold.

Case 3. $|X \cap D| = 1$. Then $x_2 \notin D$. If $x_1 \in D$, then x_1 is paired with $u \in D$, while $v \in D$ to dominate x_3. Consequently, $D \cap \{u, x_1, x_2, x_3, v\} = \{u, x_1, v\}$. Similarly, if $x_3 \in D$, then $D \cap \{u, x_1, x_2, x_3, v\} = \{u, x_3, v\}$.

Our first result regarding the construction of msd-4 graphs from smaller graphs shows that subdividing any edge of an msd-4 graph four times produces another msd-4 graph. Repeatedly subdividing edges of an msd-4 graph thus yields, for example, msd-4 graphs of arbitrary large girth. In fact, we prove a stronger result: subdividing any edge of any graph G without isolated vertices four times produces a graph that has the same multisubdivision number as G.

Proposition 7. For any graph G and any edge e of G, $\text{msd}_{\text{pr}}(G_{e,4}) = \text{msd}_{\text{pr}}(G)$.

Proof. Say $\text{msd}_{pr}(G) = t \leq 4$ and $e = uv$ has been subdivided by replacing it with the path $(u, x_1, x_2, x_3, x_4, v)$. Then $\gamma_{pr}(G_{e,t}) = \gamma_{pr}(G) + 2$ and there exists an edge e' of G such that $\gamma_{pr}(G_{e',t}) = \gamma_{pr}(G) + 2$. If $e \neq e'$, then subdividing $e \in E(G_{e',t})$ four times yields the graph $(G_{e',t})_{e,t}$. Since $\text{msd}_{pr}(G_{e',t}) \leq 4$, $\gamma_{pr}((G_{e',t})_{e,t}) = \gamma_{pr}(G_{e',t}) + 2 = \gamma_{pr}(G) + 4$. But $(G_{e',t})_{e,t} = (G_{e,t})_{e',t}$, hence $\gamma_{pr}((G_{e,t})_{e,t}) = \gamma_{pr}(G) + 4 = \gamma_{pr}(G_{e,t}) + 2$. If $e = e'$, say uv has been subdivided, in G, by replacing it with (u, x_1, \ldots, x_t, v). Subdividing (without loss of generality) the edge x_{t+1} four times by replacing it with $(x_t, x_{t+1}, \ldots, x_{t+4}, v)$, we obtain the graph $(G_{e,t})_{x_{t+1},t} = (G_{e,t})_{x_{t+1},t}$ with $\gamma_{pr}((G_{e,t})_{x_{t+1},t}) = \gamma_{pr}(G_{e,t}) + 2$. It follows that $\text{msd}_{pr}(G_{e,t}) \leq t$.

We show that $\text{msd}_{pr}(G_{e,t}) \geq t$. If $t = 1$, this is obvious, hence assume $t \geq 2$. Consider any $e' \in E(G)$. Suppose first that $e' \neq e$. Since $\text{msd}_{pr}(G) = t$, $\gamma_{pr}(G_{e',t-1}) = \gamma_{pr}(G)$. If D' is any $\gamma_{pr}(G_{e',t-1})$-set, then $D = D' \cup \{x_1, x_2\}$ (if u and v are paired in D') or $D = D' \cup \{x_2, x_3\}$ (otherwise) is a paired dominating set of $(G_{e,t})_{e',t-1}$ of cardinality $|D| = \gamma_{pr}(G_{e',t-1}) + 2 = \gamma_{pr}(G) + 2 = \gamma_{pr}(G_{e,t})$. Assume $e' = e$. Without loss of generality subdivide the edge x_{t+1} of $G_{e,t}$ $t-1$ times by replacing it with the path $(x_3, \ldots, x_{t+1}, v)$ and denote the resulting graph $(G_{e,t})_{x_{t+1},t-1}$ by $G_{e,3+t}$ for simplicity. Also consider the graph $(G_{e,t})_{e',t-1}$ obtained from G by subdividing e by uv by replacing it with $(u, x_1, \ldots, x_{t-1}, v)$. Since $\text{msd}_{pr}(G) = t$, $\gamma_{pr}(G_{e,t-1}) = \gamma_{pr}(G)$. Let S' be any $\gamma_{pr}(G_{e,t-1})$-set. We consider three cases. In each case we construct a paired dominating set S of $G_{e,3+t}$ such that $|S| = |S'| + 2 = \gamma_{pr}(G_{e,t})$: this shows that $\text{msd}_{pr}(G_{e,t}) \geq t$.

Case 1. $t = 2$. If $x_1 \notin S'$, then without loss of generality $u \in S'$ to dominate x_1, and $S' \setminus \{u\}$ dominates v. Let $S = S' \cup \{x_3, x_4\}$. If $x_1 \in S'$, then again without loss of generality x_1 is paired with u. Let $S = S' \cup \{x_3, x_4\}$.

Case 2. $t = 3$. If $S' \cap \{x_1, x_2\} = \emptyset$, then u dominates x_1 while v dominates x_2; let $S = S' \cup \{x_3, x_4\}$ (so v dominates x_6). If (without loss of generality) $S' \cap \{x_1, x_2\} = \{x_1\}$, then u and x_1 are paired, and $S' \setminus \{u, x_1\}$ dominates v. Let $S = S' \cup \{x_4, x_5\}$. If $\{x_1, x_2\} \subseteq S'$, then x_1 and x_2 are paired (otherwise $S' \cup \{x_1, x_2\}$ is a paired dominating set of G, which is not the case). Let $S = S' \cup \{x_5, x_6\}$.

Case 3. $t = 4$. By Lemma 6, without loss of generality $S' \cap \{u, x_1, x_2, x_3, v\} = \{x_1, x_2\}$ or $\{u, x_1, v\}$. In the former case, let $S = S' \cup \{x_5, x_6\}$, and in the latter case, let $S = S' \cup \{x_4, x_5\}$.

In all cases, S is a paired dominating set of $G_{e,3+t}$ of cardinality $\gamma_{pr}(G) + 2 = \gamma_{pr}(G_{e,t})$, and $\text{msd}_{pr}(G_{e,t}) \geq t$. It follows that $\text{msd}_{pr}(G_{e,t}) = t$, as required.

We next prove results pertaining to the \oplus-operations defined above that hold for general msd-4 graphs, not only block graphs. We show that the \oplus-operations can be used to construct new connected msd-4 graphs from smaller ones.
Our next result shows that performing the operation \(G_1 \oplus u_1u_2 G_2 \) on msd-4 graphs \(G_1 \) and \(G_2 \) with \(\gamma_{pr}(G_i) \)-critical vertices \(u_1 \) and \(u_2 \), respectively, results in an msd-4 graph in which each \(\gamma_{pr}(G_i) \)-critical vertex is \(\gamma_{pr}(G) \)-critical.

Proposition 8. Let \(G_1 \) and \(G_2 \) be disjoint msd-4 graphs with \(\gamma_{pr}(G_i) \)-critical vertices \(u_i, i = 1, 2 \). Then for the graph \(G = G_1 \oplus u_1u_2 G_2 \), \(\gamma_{pr}(G) = \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2 \), any \(\gamma_{pr}(G_i) \)-critical vertex (including \(u \)) is \(\gamma_{pr}(G) \)-critical and

\[
\text{msd}_{pr}(G) = 4.
\]

Proof. Since \(u_i \in V(G_i) \) is \(\gamma_{pr}(G_i) \)-critical, \(\gamma_{pr}(G_1 - u_1) + \gamma_{pr}(G_2 - u_2) = \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 4 \), and at most two more vertices are needed to pairwise dominate \(G \). Therefore \(\gamma_{pr}(G) \leq \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2 \).

Suppose there exists a paired dominating set \(S \) of \(G \) such that \(|S| < \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2 \) and let \(S = S \cap V(G_i) \). First suppose that \(u \notin S \). Assume without loss of generality that \(S_1 \) dominates \(u \). Then \(S_1 \) is a paired dominating set of \(G_1 \) and \(S_2 \) is a paired dominating set of \(G_2 - u_2 \). Hence \(|S_1| \geq \gamma_{pr}(G_i) \) and \(|S_2| \geq \gamma_{pr}(G_2) - 2 \). But then \(|S| = |S_1| + |S_2| \geq \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2 \), which is not the case. Therefore we may assume that \(u \in S \) (in this case \(u_i \in S_1, i = 1, 2 \)) and \(|S_1| + |S_2| = |S| + 1 \). Without loss of generality, \(u \) is paired with \(v \in V(G_1) \), hence \(S_1 \) is a paired dominating set of \(G_1 \). Therefore \(|S_1| \geq \gamma_{pr}(G_1) \) so that \(|S_2| \leq \gamma_{pr}(G_2) - 3 \). If \(N_{G_2}(u_2) \subseteq S_2 \), then \(S_2 \setminus \{u_2\} \) is a paired dominating set of \(G_2 \), and if there exists \(w \in N_{G_2}(u_2) \setminus S_2 \), then \(S_2 \cup \{w\} \) is a paired dominating set of \(G_2 \). This is impossible because \(|S_2 \cup \{w\}| \leq \gamma_{pr}(G_2) - 2 \). Hence

\[
\gamma_{pr}(G) = \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2.
\]

If \(w_i \) is \(\gamma_{pr}(G_i) \)-critical, then, for \(j \neq i \), the union of any \(\gamma_{pr}(G_i - w_i) \)-set and any \(\gamma_{pr}(G_j - u_j) \)-set is a paired dominating set of \(G - w_i \) (this holds for \(w_i = u_i = u \) also), so

\[
\gamma_{pr}(G - w_i) \leq \gamma_{pr}(G_i - w_i) + \gamma_{pr}(G_j - u_j) = \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 4 < \gamma_{pr}(G).
\]

Therefore \(u_i \) is \(\gamma_{pr}(G) \)-critical.

Without loss of generality consider \(e \in E(G_1) \) and subdivide \(e \) three times. Then, since \(\text{msd}_{pr}(G_1) = 4 \) and \(w_2 \) is \(\gamma_{pr}(G_2) \)-critical, we obtain

\[
\gamma_{pr}(G_{e,3}) \leq \gamma_{pr}(G_{1e,3}) + \gamma_{pr}(G_2 - w_2) = \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2 = \gamma_{pr}(G).
\]

Therefore \(\text{msd}_{pr}(G) = 4 \). \(\blacksquare \)

We show next that performing the operation \(G_1 \oplus e_1e_2 G_2 \) on msd-4 graphs \(G_i, i = 1, 2 \), with edges \(e_i = x_iy_i \), where \(x_i \) is a \(\gamma_{pr}(G_i) \)-critical vertex, results in an msd-4 graph in which each \(\gamma_{pr}(G_i) \)-critical vertex is \(\gamma_{pr}(G) \)-critical.
Proposition 9. Let G_i, $i = 1, 2$, be disjoint msd-4 graphs with $e_i = x_i y_i \in E(G_i)$, where $x_i \in \text{Cr}(G_i)$. Then for the graph $G = G_1 \oplus e_1 e_2 G_2$, $\gamma_{pr}(G) = \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2$, any $\gamma_{pr}(G_i)$-critical vertex (including $x = x_1 = x_2$) is $\gamma_{pr}(G)$-critical and $\text{msd}_{pr}(G) = 4$.

Proof. By Theorem 1, there exists a $\gamma_{pr}(G_i)$-set in which x_i and y_i are matched. Therefore

\begin{equation}
\gamma_{pr}(G) \leq \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2.
\end{equation}

On the other hand, it suffices to add two vertices to a $\gamma_{pr}(G)$-set when splitting it into paired dominating sets of G_1 and G_2. Hence we have equality in (1). As in the proof of Proposition 8, any $\gamma_{pr}(G_i)$-critical vertex is $\gamma_{pr}(G)$-critical.

Let $e \in E(G)$ be any edge. If $e \in E(G_1) \setminus \{e_1\}$, then

$$\gamma_{pr}(G_{e,3}) \leq \gamma_{pr}(G_{1 e,3}) + \gamma_{pr}(G_2 - x_2) = \gamma_{pr}(G_1) + \gamma_{pr}(G_2) - 2 = \gamma_{pr}(G).$$

The case when $e \in E(G_2) \setminus \{e_2\}$ is analogous. Thus assume $e = xy$ and subdivide e by replacing it with the path (x, u, v, w, y). Let S be any $\gamma_{pr}(G - x)$-set. As shown above, $|S| = \gamma_{pr}(G) - 2$. Now $S \cup \{u, v\}$ is a paired dominating set of $G_{e,3}$ of cardinality $\gamma_{pr}(G)$. It follows that G is an msd-4 graph. ■

We now describe a type of “reverse” operation, called a split operation, for each of the \oplus-operations.

$G \ominus u$. Let G be a connected graph with a cut-vertex u. Denote the components of $G - u$ by F_1, F_2, \ldots, F_k. For each i, let G_i be the graph obtained from F_i by adding a new vertex u_i, joining u_i to $v_i \in V(F_i)$ if and only if $u v_i \in E(G)$. Denote the disjoint union $G_1 + \cdots + G_k$ by $G \ominus u$.

$G \ominus xy$. Let G be a connected graph containing a vertex-cut $\{x, y\}$, where $xy \in E(G)$. Denote the components of $G - \{x, y\}$ by F_1, F_2, \ldots, F_k. For each i, let G_i be the graph obtained from F_i by adding the edge $x_i y_i$, joining x_i (y_i, respectively) to $v_i \in V(F_i)$ if and only if $x v_i \in E(G)$ ($y v_i \in E(G)$, respectively). Denote the disjoint union $G_1 + \cdots + G_k$ by $G \ominus xy$.

The next proposition shows that if an msd-4 graph G is split at a γ_{pr}-critical cut-vertex u, the components of $G \ominus u$ are msd-4 graphs having the copies of u as γ_{pr}-critical vertices.

Proposition 10. Let G be an msd-4 graph with a γ_{pr}-critical cut-vertex u. Denote the components of $G \ominus u$ by G_1, \ldots, G_k. Then for each $i = 1, \ldots, k$, u_i is a $\gamma_{pr}(G_i)$-critical vertex and $\text{msd}_{pr}(G_i) = 4$.
Proof. Since \(u \) is \(\gamma_{pr}(G) \)-critical and \(G - u \) is the disjoint union of \(G_i - u_i, \) \(i = 1, \ldots, k, \)

\[
\gamma_{pr}(G) - 2 = \gamma_{pr}(G - u) = \sum_{i=1}^{k} \gamma_{pr}(G_i - u_i).
\]

Suppose \(\gamma_{pr}(G_1 - u_1) \geq \gamma_{pr}(G_1) \). Let \(R_1 \) be a \(\gamma_{pr}(G_1) \)-set and, for \(i \geq 2 \), let \(R_i \) be a \(\gamma_{pr}(G_i - u_i) \)-set. Since \(R_1 \) dominates \(u_1, R = \bigcup_{i=1}^{k} R_i \) is a paired dominating set of \(G \). But then

\[
\gamma_{pr}(G) \leq |R| \leq \gamma_{pr}(G_1) + \sum_{i=2}^{k} \gamma_{pr}(G_i - u_i) \leq \sum_{i=1}^{k} \gamma_{pr}(G_i - u_i) = \gamma_{pr}(G) - 2,
\]

which is impossible. Thus \(u_1 \) is \(\gamma_{pr}(G_1) \)-critical. The same argument works for each \(i \in \{2, \ldots, k\} \).

Consider an arbitrary edge \(e \in E(G_1) \) and subdivide \(e \) three times. Then

\[
(2) \quad \gamma_{pr}(G_{e,3}) \leq \gamma_{pr}(G_{1_{e,3}}) + \sum_{i=2}^{k} \gamma_{pr}(G_i - u_i).
\]

We show that equality holds in (2). Let \(S \) be any \(\gamma_{pr}(G_{e,3}) \)-set and define \(S_1 = S \cap V(G_{1_{e,3}}) \) and \(S_i = S \cap V(G_i) \) for \(i = 2, \ldots, k \) (if \(u \in S \), then \(u_i \in S_i \) for each \(i \)). First suppose that \(u \notin S \). If \(S_1 \) dominates \(u \), then \(S_1 \) is a paired dominating set of \(G_{1_{e,3}} \) and \(S_i, i \geq 2, \) is a paired dominating set of \(G_i - u_i \). Hence \(|S_1| \geq \gamma_{pr}(G_{1_{e,3}}) \) and \(|S_i| \geq \gamma_{pr}(G_i - u_i) \), so that \(\gamma_{pr}(G_{e,3}) = |S| = \sum_{i=1}^{k} |S_i| \geq \gamma_{pr}(G_{1_{e,3}}) + \sum_{i=2}^{k} \gamma_{pr}(G_i - u_i) \) as required. On the other hand, if \(S_1 \) does not dominate \(u \), then \(S_1 \) is a paired dominating set of \(G_j \) for some \(j \geq 2 \), so that \(|S_j| \geq \gamma_{pr}(G_j) = \gamma_{pr}(G_j - u_j) + 2 \) (since \(u_j \) is \(\gamma_{pr}(G_j) \)-critical).

Let \(S_j' \) be a \(\gamma_{pr}(G_j - u_j) \)-set, \(S_1' = S_1 \cup \{u, u'\} \) for some \(u' \in N_{G_1}(u) \), and \(S' = (S' \setminus S_j) \cup S_j' \). Then \(|S'| = |S|, S_1' \) is a paired dominating set of \(G_{1_{e,3}} \) and the result follows as before.

Now suppose that \(u \in S \). Then \(|S_1| + \sum_{i=2}^{k} |S_i| = |S| + k - 1 \) and \(u \) is paired with a vertex in exactly one of the graphs \(G_{1_{e,3}} \) or \(G_i, i \geq 2 \). For each of the \(k - 1 \) other graphs, either \(S_1 \cup \{u_i\} \), for some neighbour \(u_i \notin S_i \) of \(u_i \), or \(S_1 \setminus \{u_i\} \) (if all neighbours of \(u_i \) in \(G_i \) belong to \(S_i \)) is a paired dominating set. Hence

\[
\gamma_{pr}(G_{1_{e,3}}) + \sum_{i=2}^{k} \gamma_{pr}(G_i) \leq |S| + 2(k - 1).
\]

Since \(u_i \) is \(\gamma_{pr}(G_i) \)-critical for each \(i = 2, 3, \ldots, k, \)

\[
\gamma_{pr}(G_{1_{e,3}}) + \sum_{i=2}^{k} \gamma_{pr}(G_i - u_i) \leq |S| = \gamma_{pr}(G_{e,3}).
\]

Therefore we have equality (2). Now
\[\gamma_{pr}(G_{1,e,3}) = \gamma_{pr}(G_{e,3}) - \sum_{i=2}^{k} \gamma_{pr}(G_i - u_i) = \gamma_{pr}(G) - \sum_{i=2}^{k} \gamma_{pr}(G_i - u_i) \]

\[= \gamma_{pr}(G_1) + \sum_{i=2}^{k} \gamma_{pr}(G_i - u_i) - \sum_{i=2}^{k} \gamma_{pr}(G_i - u_i) = \gamma_{pr}(G_1). \]

Hence, for any edge \(e \in E(G_1) \), \(\gamma_{pr}(G_{1,e,3}) = \gamma_{pr}(G) \). Thus \(msd_{pr}(G_1) = 4 \).

Similar reasoning may be applied to \(G_i \) for \(i \in \{2, 3, \ldots, k\} \).

5. MSD-4 Block Graphs

The last three results we need for the proof of Theorem 4 concern block graphs. In the first result we prove that every non-leaf vertex of an MSD-4 block graph is a cut-vertex.

Theorem 11. Let \(G \) be a graph containing a block \(B \cong K_n \), where \(n \geq 3 \), such that some vertex of \(B \) is not adjacent to any vertex of \(G - B \). Then

\[msd_{pr}(G) < 4. \]

Proof. Suppose the hypothesis of the theorem holds but \(msd_{pr}(G) = 4 \). Let \(V(B) = \{v_0, \ldots, v_{n-1}\} \) and say \(u = v_0 \) is not adjacent to any vertex of \(G - B \). Subdivide the edge \(uv_2 \) by replacing it with the path \((u, x_3, x_2, x_1, v_2) \) (see Figure 3). Denote \(X = \{x_1, x_2, x_3\} \) and let \(D \) be a \(\gamma_{pr} \)-set of \(G_{uv_2,3} \). By Lemma 6 we only have to consider the cases \(D \cap \{u, x_1, x_2, x_3, v_2\} \in \{\{u, x_1, v_2\}, \{u, x_3, v_2\}, \{x_1, x_2\}, \{x_2, x_3\}\} \).

![Figure 3. The block B with the edge uv2 subdivided with vertices x1, x2, x3.](image-url)
Case 1. $|X \cap D| = 1$. If $D \cap \{u, x_1, x_2, x_3, v_2\} = \{u, x_1, v_2\}$, then x_1 and v_2 are paired in D, while u is paired with v_i for some $i \neq 0, 2$. However, then $D \setminus \{x_1, u\}$, with v_2 and v_i paired, is a smaller paired dominating set of G. If $D \cap \{u, x_1, x_2, x_3, v_2\} = \{u, x_3, v_2\}$, then $D \setminus \{x_3, u\}$ is a smaller paired dominating set of G. In either case $\text{msd}_p(G) < 4$, contrary to our assumption.

Case 2. $|X \cap D| = 2$. If $D \cap \{u, x_1, x_2, x_3, v_2\} = \{x_1, x_2\}$, then x_1 and x_2 are paired in D. To pairwise dominate u, $v_i \in D$ for some $i \neq 0, 2$. But then $D \setminus \{x_1, x_2\}$ is a paired dominating set of G (with v_i paired as in D) and $\text{msd}_p(G) < 4$, contrary to our assumption. Hence assume $D \cap \{u, x_1, x_2, x_3, v_2\} = \{x_2, x_3\}$. Then x_2 and x_3 are matched in D. If $v_i \in D$ for some i, then $D \setminus \{x_2, x_3\}$ is a paired dominating set of G (again with v_i paired as in D), a contradiction.

We therefore assume henceforth that

(i) D contains x_2 and x_3, but neither x_1 nor any v_0, \ldots, v_{n-1}.

By Lemma 6, u is γ_{pr}-critical, that is,

(ii) $\gamma_{pr}(G - u) = \gamma_{pr}(G) - 2$.

For each $i = 1, \ldots, n-1$, let G_i be the component of $G - E(B)$ that contains v_i. Since B is a block of G, the subgraphs G_i are distinct and pairwise vertex-disjoint. Let $D_i = D \cap V(G_i)$. Then $|\bigcup_{i=1}^{n-1} D_i| = |D \setminus \{x_2, x_3\}| = \gamma_{pr}(G) - 2$. By (i), each D_i is a $\gamma_{pr}(G_i)$-set that does not contain v_i.

We next show that

(iii) no $\gamma_{pr}(G)$-set contains $u = v_0$ and at least two v_i, $i \geq 1$.

Suppose there exists such a set Z: assume without loss of generality that $\{u, v_1, v_2, \ldots, v_k\} \subseteq Z$, $k \geq 2$. Necessarily, u is paired with some v_i, $i = 1, \ldots, k$, in Z. Assume (again without loss of generality) u is paired with v_1. Let $Z_1 = Z \cap V(G_1) \setminus \{v_1\}$ and, for $i \geq 2$, let $Z_i = Z \cap V(G_i)$. Then $\bigcup_{i=1}^{n-1} Z_i \subseteq V(G - u)$ and $|\bigcup_{i=1}^{n-1} Z_i| = |Z| - 2 = \gamma_{pr}(G - u) < \gamma_{pr}(G)$, by (ii). Since v_1 and u are paired, $G_1[Z_1]$ contains a perfect matching, as does $G[\bigcup_{i=2}^{n-1} Z_i]$. Since v_1 is not adjacent to any vertex of $G - v_i$, $i \geq 2$, and v_2 dominates B in G, $\bigcup_{i=2}^{n-1} Z_i$ is a paired dominating set of $G - G_1$.

Suppose $|Z_1| < |D_1|$. Since both Z_1 and D_1 have even cardinality, $|Z_1| \leq |D_1| - 2$. Then Z_1 does not dominate $G_1 - v_1$, otherwise $\bigcup_{i=1}^{n-1} Z_i$ is a paired dominating set of G of cardinality less than $\gamma_{pr}(G)$, which is impossible. Since $Z_1 \cup \{v_1\}$ dominates G_1, there exists a vertex $w \in N_{G_1}(v_1)$ that is undominated by Z_1. Then $W_1 = Z_1 \cup \{w, v_1\}$ is a paired dominating set of G_1 of cardinality at most $|D_1|$ that contains v_1. But now $W_1 \cup D_2 \cup D_3 \cup \ldots \cup D_{n-1}$ is a paired dominating set of G of cardinality at most $|D \setminus \{x_2, x_3\}| = \gamma_{pr}(G) - 2$, which is impossible. We conclude that $|Z_1| = |D_1|$.

Let $Z' = D_1 \cup (\bigcup_{i=2}^{n-1} Z_i)$. Since $\bigcup_{i=2}^{n-1} Z_i$ is a paired dominating set of $G - G_1$ and D_1 is a paired dominating set of G, Z' is a paired dominating set of G.

Moreover,

$$|Z'| = \left| \bigcup_{i=2}^{n-1} Z_i \right| + |D_1| = \left| \bigcup_{i=1}^{n-1} Z_i \right| = |Z| - 2 = \gamma_{pr}(G - u) < \gamma_{pr}(G),$$

which is impossible. This concludes the proof of (iii).

Subdivide the edge v_1v_2 with vertices y_1, y_2, y_3, where y_1 is adjacent to v_1 and y_3 is adjacent to v_2 (see Figure 4). Denote $Y = \{y_1, y_2, y_3\}$ and let Q be a γ_{pr}-set of $G_{v_1v_2,3}$. Without loss of generality, by Lemma 6 we only have to consider the cases $Q \cap \{v_1, v_2, y_1, y_2, y_3\} \in \{\{y_1, y_2\}, \{v_1, v_2, y_1\}\}$.

![Figure 4. The block B with the edge v_1v_2 subdivided with vertices y_1, y_2, y_3.](image)

Case 3a. $Q \cap \{v_1, v_2, y_1, y_2, y_3\} = \{y_1, y_2\}$. Then these two vertices are paired in Q. To pairwise dominate $u, v_i \in Q$ for some i. It follows that $Q \setminus \{y_1, y_2\}$ is a paired dominating set of G, so $\text{msd}_{pr}(G) < 4$, contrary to our assumption.

Case 3b. $Q \cap \{v_1, v_2, y_1, y_2, y_3\} = \{v_1, v_2, y_1\}$. Then y_1 is paired with v_1. If $u \notin Q$, then $Q' = (Q \setminus \{y_1\}) \cup \{u\}$ is a paired dominating set of G containing u, v_1, v_2. By (iii), Q' is not a γ_{pr}-set of G, from which it follows that $\gamma_{pr}(G) < |Q|$ and $\text{msd}_{pr}(G) < 4$. Assume therefore that $u \in Q$. Then u is paired in Q with v_i for some $i > 1$. Now $Q'' = Q \setminus \{y_1, u\}$ is a paired dominating set of G in which v_1 and v_i are paired. In both cases we again have a contradiction and the proof is complete.

The graph in Figure 5 shows that the statement of Theorem 11 is false if the complete subgraph B is not a block of G.

The next result in this section shows that msd-4 block graphs have many γ_{pr}-critical vertices.
Figure 5. A graph G with $\text{msd}_{pr}(G) = 4$ and a subgraph K_3 that is not a block of G.

Theorem 12. If G is a block graph with $\text{msd}_{pr}(G) = 4$, then for any edge $uv \in E(G)$,
\[(N_G[u] \cup N_G[v]) \cap \text{Cr}(G) = \emptyset. \]

Proof. Suppose there exists an edge $uv \in E(G)$ such that $(N_G[u] \cup N_G[v]) \cap \text{Cr}(G) = \emptyset$. By Theorem 1, no vertex in $N_G[u] \cup N_G[v]$ is a leaf. We subdivide the edge uv by replacing it with the path (u, x_1, x_2, x_3, v) to obtain the graph $G_{uv,3}$. By Lemma 6, for any γ_{pr}-set S of $G_{uv,3}$, $S \cap \{u, v, x_1, x_2, x_3\} \subseteq \{u, v, x_1\}$, $\{u, v, x_3\}$. Without loss of generality assume there exists such a set S such that $S \cap \{u, v, x_1, x_2, x_3\} = \{u, v, x_1\}$, and among all such sets S, let D be one for which $\text{PN}(u, D)$ is as small as possible. Then x_1 and u are paired in D.

Say v is paired with v' and let B be the block of G that contains uv. If $v' \in V(G) \setminus V(B)$, let G_v be the subgraph of G that contains v, and if $v' \in V(B)$, let G_v be the subgraph of G containing v. In either case, $v' \in V(G_v)$. Let $D_v = D \cap V(G_v)$ and $D' = D \setminus \{x_1, u\}$. Then $G[D']$ has a perfect matching and D_v is a paired dominating set of G_v containing v and v'. In fact, D_v is a $\gamma_{pr}(G_v)$-set, for if not, let D'' be a smaller paired dominating set of G_v. Consider $N_G(u) \setminus V(B)$. If $B \cong K_2$, then $N_G(u) \setminus V(B) = N_G(u) \setminus \{v\}$ is nonempty because u is not a leaf, and if $B \cong K_n$ for $n \geq 3$, then $N_G(u) \setminus V(B)$ is nonempty by Theorem 11. If $N_G(u) \setminus V(B) \subseteq D$, then D' is a paired dominating set of G, and if there exists $w \in N_G(u) \setminus V(B) \setminus D$, then $(D \setminus \{x_1\} \setminus D_v) \cup D'' \cup \{w\}$ is a smaller paired dominating set of G than D. In both cases we have a contradiction to $\text{msd}_{pr}(G) = 4$.

Since $\text{msd}_{pr}(G) = 4$, $|D'| = \gamma_{pr}(G_{uv,3}) - 2 = \gamma_{pr}(G) - 2$. Consequently, D' does not dominate G. Since $v \in D'$ dominates B in G, there exist vertices $w_1, \ldots, w_k \in N_G(u) \setminus N_G[v] \subseteq N_G(u) \setminus B$ that are undominated by D', that is,
\{w_1, \ldots, w_k\} = PN(u, D). For \(i = 1, \ldots, k\), let \(G_i\) be the component of \(G - u\) that contains \(w_i\). Possibly, \(G_i = G_j\) for \(i \neq j\); this happens exactly when \(w_i w_j \in E(G)\), and then \(w_i\) and \(w_j\) also belong to the same (complete) block of \(G_i\). Since no \(w_i\) is adjacent to \(v\) or \(v'\), \(V(G_i) \cap V(G_v) = \emptyset\) for each \(i\). Define \(D_i = D \cap V(G_i)\). Then \(G_i[D_i]\) has a perfect matching, but does not dominate \(w_i\). If it is nevertheless true that \(\gamma_{pr}(G_i) = |D_i|\) for some \(i\), let \(Q_i\) be a \(\gamma_{pr}(G_i)\) set. Then \(D^* = (D \setminus D_i) \cup Q_i\) is a \(\gamma_{pr}(G_{uv,3})\)-set such that \(PN(u, D^*) \subseteq PN(u, D) \setminus \{w_i\}\), contrary to the choice of \(D\). Therefore \(\gamma_{pr}(G_i) \geq |D_i| + 2\) for each \(i\).

Since each stem belongs to all paired dominating sets, no \(w_i\) is a stem, and by our initial assumption, no \(w_i\) is a leaf. Subdivide the edge \(uw_1\) by replacing it with the path \((u, y_1, y_2, y_3, w_1)\). Consider a \(\gamma_{pr}(G_{uv,1,3})\)-set \(S\). Since \(u, w_1 \notin Cr(G)\), Lemma 6 states that \(S \cap \{u, y_1, y_2, y_3, w_1\} = \emptyset\).

- In the former case, \(y_1\) is paired with \(u\) and \(S_1 = S \cap V(G_1)\) is a paired dominating set of \(G_1\); hence \(|S_1| \geq \gamma_{pr}(G_1) \geq |D_1| + 2\). Since \(w_1\) is adjacent to all \(w_i \in V(G_1)\), \(D_1 \cup \{w_1\}\) dominates \(G_1\) (but not pairwise). Now \(S' = (S \setminus S_1) \cup D_1 \cup \{w_1, y_3\}\) is a paired dominating set of \(G_{uv,1,3}\) such that \(|S'| \leq |S|\), hence \(S'\) is a \(\gamma_{pr}(G_{uv,1,3})\)-set. Moreover, \(S' \cap \{u, y_1, y_2, y_3, w_1\} = \{u, y_1, y_3, w_1\}\), contrary to Lemma 6.

- In the latter case, \(y_3\) is paired with \(w_1\). Then \(S_2 = (S \cap V(G_1)) \cup \{y_3\}\) is a paired dominating set of the graph obtained from \(G_1\) by joining \(y_3\) to \(w_1\). If all neighbours of \(w_1\) in \(G_1\) belong to \(S_2\), then \(S_2 \setminus \{w_1, y_3\}\) is a paired dominating set of \(G_1\). But then \(S'' = S \setminus \{w_1, y_3\}\) is a paired dominating set of \(G\) such that \(|S''| < |S|\), contradicting \(msd_{pr}(G) = 4\). Assume some neighbour \(z\) of \(w_1\) in \(G_1\) does not belong to \(S_2\). Then \(S_3 = (S_2 \setminus \{y_3\}) \cup \{z\}\) is a paired dominating set of \(G_1\), so that \(|S_2| = |S| \geq |D_1| + 2\). Since \(u \in S\) and \(\{w_1, \ldots, w_k\} \subseteq N(u)\), \(S^* = (S_3 \setminus S_2) \cup D_1\) is a paired dominating set of \(G\) such that \(|S^*| < |S|\), again a contradiction.

This completes the proof of the theorem.

Although the graph \(G\) in Figure 5 satisfies \(msd_{pr}(G) = 4\) without being a block graph, Theorem 12 holds for \(G\) as well.

Our final result in this section concerns the reverse operation \(G \ominus xy\) for certain msd-4 block graphs.

Proposition 13. Let \(G\) be a connected msd-4 block graph such that the only \(\gamma_{pr}(G)\)-critical vertices are leaves. Let \(x\) be a leaf adjacent to the stem \(y\), where \(\{x, y\}\) is a vertex-cut, and denote the components of \(G \ominus xy\) by \(G_1, \ldots, G_k\). Then for each \(i = 1, \ldots, k\), \(G_i\) is an msd-4 graph and \(x_i \in Cr(G_i)\).

Proof. If \(G_i\) is an msd-4 graph, it will follow from Theorem 1(ii) that \(x_i \in Cr(G_i)\). However, we need the fact that \(x_i\) is \(\gamma_{pr}(G_i)\)-critical to show that \(msd_{pr}(G_i) = 4\), hence this is what we prove first.
Since G is a block graph, $N_{G_i-x_i}(y_i)$ induces a clique for each $i = 1, \ldots, k$. Since x is a leaf, y belongs to every paired dominating set of G, and by Theorem 1(ii), $x \in \text{Cr}(G)$. Hence y belongs to no $\gamma_{pr}(G-x)$-set (for such a set would dominate x and thus G, contradicting $x \in \text{Cr}(G)$).

Let D be a $\gamma_{pr}(G-x)$ set such that $\{|D \cap N(y)|\}$ is maximum and let $D_i = D \cap V(G_i)$, $i = 1, \ldots, k$. Since $x \in \text{Cr}(G)$ and $y \notin D$, $|D| = \sum_{i=1}^{k}|D_i| = \gamma_{pr}(G) - 2$. Also, D_i is a paired dominating set of $G_i - \{x_i, y_i\}$ for each i, and a paired dominating set of $G_i - x_i$ for at least one i. We show that, in fact,

(A) D_i is a paired dominating set of $G_i - x_i$ for each i.

First suppose $|N_{G_i-x_i}(y_i)| \geq 2$; say $z_1, z_2 \in N_{G_i-x_i}(y_i)$. Since $N_{G_i-x_i}(y_i)$ induces a clique, $z_1z_2 \in E(G)$. By Theorem 12, $(N_G[z_1] \cup N_G[z_2]) \cap \text{Cr}(G) \neq \emptyset$. Since $N_G[z_i] = N_{G_i-x_i}[z_i]$ and $(G_i - x_i)$ is not a leaf (and thus, by the hypothesis, not $\gamma_{pr}(G)$-critical), z_1 or z_2 is adjacent to a $\gamma_{pr}(G)$-critical vertex, i.e., a leaf. Say z_1 is adjacent to a leaf z'. Then z_1 belongs to any paired dominating set of any subgraph of G containing both z_1 and z', so $z_1 \in D$. Therefore D_i dominates y_i and (A) holds.

Assume therefore that $|N_{G_i-x_i}(y_i)| = 1$, say $N_{G_i-x_i}(y_i) = \{z\}$. If $z \in D$, we are done, hence assume $z \notin D$. By Theorem 1(iii), z is not a leaf, hence there exists a vertex $z' \in N_{G_i-x_i}(z) \setminus \{y_i\}$. By Theorem 1(i), G has a γ_{pr}-set X such that zz' belongs to a matching of $G[X]$. Now $y \in X$, but y is not paired with any vertex of G_i-x_i, since $N_{G_i-x_i}(y_i) = \{z\}$. Therefore $X_i = (X \setminus \{z, y\}) \cap V(G_i)$ is a paired dominating set of $G_i - x_i$. Moreover, $|X_i| \leq |D_i|$, otherwise $(X \setminus X_i) \cup D_i$ is a smaller paired dominating set of G, which is impossible. However, now $D' = (D \setminus D_i) \cup X_i$ is a paired dominating set of $G - x$, hence a $\gamma_{pr}(G-x)$-set, containing more neighbours of y than D, contrary to the choice of D. Hence (A) holds in this case as well.

Therefore $\gamma_{pr}(G_i - x_i) \leq |D_i|$ for each i, so that

\[
(3) \quad \sum_{i=1}^{k} \gamma_{pr}(G_i - x_i) \leq \sum_{i=1}^{k} |D_i| = |D| = \gamma_{pr}(G-x).
\]

Suppose there exists a $\gamma_{pr}(G_i - x_i)$-set Y_i containing y_i. Since no D_j contains y_j, $D' = (D \setminus D_i) \cup Y_i$ is a paired dominating set of $G - x$ such that $|D'| \leq |D| = \gamma_{pr}(G) - 2$ and D' dominates x. Then D'' is a paired dominating set of G, which is impossible. Therefore no $\gamma_{pr}(G_i - x_i)$-set contains y_i. Similarly, if $\gamma_{pr}(G_i - x_i) < |D_i|$ for some i and Z_i is a $\gamma_{pr}(G_i - x_i)$-set, then $D'' = (D \setminus D_i) \cup Z_i$ is a paired dominating set of $G - x$ such that $|D''| < |D|$, which is also impossible. From these two facts we deduce that D_i is a $\gamma_{pr}(G_i - x_i)$-set, equality holds in (3) and $\gamma_{pr}(G_i) = \gamma_{pr}(G_i - x_i) + 2$, that is, x_i is $\gamma_{pr}(G_i)$-critical for each i.

We show that $\text{msd}_{pr}(G_1) = 4$: it will follow similarly that $\text{msd}_{pr}(G_i) = 4$ for each i. Since D_1 is a $\gamma_{pr}(G_1 - x_1)$-set, it is easy to see that we can pairwise
Block Graphs with Large Paired Domination Multisubdivision ... 17

dominate \(G_{1x,y,3}\) by \(|D_1| + 2 = \gamma_{pr}(G_1)\) vertices. Hence consider any edge \(e \in E(G_1 - x_1)\) and the graphs \(G_{e,3}\) and \(G_{1x,3}\). Since combining any \(\gamma_{pr}(G_{1x,3})\)-set with the sets \(D_j, j = 2, \ldots, k\), produces a paired dominating set of \(G_{e,3}\),

\[
\gamma_{pr}(G_{e,3}) \leq \gamma_{pr}(G_{1x,3}) + \sum_{i=2}^{k} \gamma_{pr}(G_i - x_i).
\]

We show that equality holds in (4). For convenience of notation, define \(H_1 = G_{1x,3}\) and \(H_i = G_{i}, i \geq 2\). Let \(S\) be a \(\gamma_{pr}(G_{e,3})\)-set and define \(S_i = S \cap V(H_i)\) for \(i = 1, \ldots, k\) (since \(y \in S, y_i \in S_i\) for each \(i\), and if \(x \in S\), then \(x_i \in S_i\) for each \(i\)). We consider two cases, depending on whether \(x \in S\) or not.

Case 1. \(x \notin S\). Then \(\sum_{i=1}^{k} |S_i| = |S| + k - 1\). Note that \(y\) is paired with \(w \in V(H_i) \setminus \{x_i, y_i\}\) for exactly one \(i\). Then \(S_i\) is a paired dominating set of \(H_i\). For \(j \neq i\), \(S_j \cup \{x_j\}\) is a paired dominating set of \(H_j\). Therefore \(\gamma_{pr}(H_j) \leq |S_j|\) and \(\gamma_{pr}(H_j) \leq |S_j| + 1\) for \(j \neq i\). For \(\ell \geq 2\), \(x_\ell\) is \(\gamma_{pr}(H_\ell)\)-critical, hence \(\gamma_{pr}(H_\ell - x_\ell) \leq \gamma_{pr}(H_\ell) - 2\). Therefore

\[
\gamma_{pr}(G_{1x,3}) + \sum_{i=2}^{k} \gamma_{pr}(G_i - x_i) \leq \sum_{i=1}^{k} |S_i| - 2(k-1) + (k-1) = \sum_{i=1}^{k} |S_i| - (k-1) = |S|
\]

and equality holds in (4).

Case 2. \(\{x, y\} \subseteq S\). Then \(x\) and \(y\) are paired in \(S, \{x_i, y_i\} \subseteq S_i\) for each \(i\), and \(S_i\) is a paired dominating set of \(H_i\). Also, \(\sum_{i=2}^{k} |S_i| = |S| + 2(k-1) - |S_1|\). Since \(x_i\) is \(\gamma_{pr}(G_i)\)-critical,

\[
\gamma_{pr}(G_{1x,3}) + \sum_{i=2}^{k} \gamma_{pr}(G_i - x_i) \leq |S_1| + \sum_{i=2}^{k} |S_i| - 2(k-1) = |S| = \gamma_{pr}(G_{e,3}),
\]

giving equality in (4).

It now follows as in the proof of Proposition 10 that \(msd(G_1) = 4\). Similarly, \(msd(G_i) = 4\) for \(i \geq 2\).

6. **Proof of Theorem 4**

We are now ready to prove our main theorem, the characterization of \(msd-4\) block graphs. We restate the theorem here for convenience.

Theorem 4 (again). Let \(G\) be a connected block graph. Then \(G\) is an \(msd-4\) graph if and only if \(G \in B\). Moreover, if \(G\) is an \(msd-4\) graph constructed from the graphs \(H_1, \ldots, H_j \in U\), then \(\text{Cr}(G) = \bigcup_{i=1}^{j} \text{Cr}(H_i)\).
Proof. If \(G \in B \), it follows immediately from Propositions 8 and 9 that \(G \) is an msd-4 graph and \(\text{Cr}(G) = \bigcup_{i=1}^{p} \text{Cr}(H_i) \).

For the converse, let \(G \) be an msd-4 block graph. If \(G \) is a tree, the result follows from Corollary 5, hence we assume that \(B \cong K_n, n \geq 3 \), is a block of \(G \). By (the contrapositive of) Theorem 11, each vertex of \(B \) is a cut-vertex, so \(\deg(v) \geq n \) for each \(v \in V(B) \). Since each non-leaf vertex of a \(K_2 \)-block is a cut-vertex, we deduce that each vertex of \(G \) is either a leaf or a cut-vertex.

Suppose \(v \in V(B) \) is \(\gamma_{pr} \)-critical. Applying Proposition 10 to \(v \) we obtain an msd-4 graph \(G_1 \) with \(v_1 = v \) and \(N_{G_1}(v_1) = B \), which contradicts Theorem 11. Thus every \(\gamma_{pr}(G) \)-critical vertex belongs only to \(K_2 \)-blocks.

We say that a vertex \(u \) is a type-A vertex if it is a \(\gamma_{pr}(G) \)-critical cut-vertex, and an edge \(uv \) is a type-A edge if \(u \) is a leaf (hence \(\gamma_{pr}(G) \)-critical) and \(G - \{u, v\} \) is disconnected. Denote the number of type-A elements (vertices and edges together) of \(G \) by \(a(G) \). First we show that

(B) if \(a(G) = 0 \), then \(G \in \mathcal{U} \).

Suppose \(a(G) = 0 \). Then every \(\gamma_{pr}(G) \)-critical vertex is a leaf. Say \(V(B) = \{v_1, \ldots, v_n\} \). Since no vertex of \(B \) is \(\gamma_{pr}(G) \)-critical, Theorem 12 implies that \(v_1 \) or \(v_n \) is adjacent to a \(\gamma_{pr}(G) \)-critical vertex. Without loss of generality we assume that \(v_1 u_1 \in E(G), u_1 \not\in V(B), \) and \(u_1 \) is a \(\gamma_{pr}(G) \)-critical vertex. Similarly, without loss of generality, \(v_i \) is adjacent to a \(\gamma_{pr}(G) \)-critical vertex \(u_i \not\in V(B) \) for \(i = 2, \ldots, n-1 \). Since \(a(G) = 0 \) and each vertex of \(G \) is either a leaf or a cut-vertex, \(\deg_G(u_i) = 1 \) for each \(i = 1, \ldots, n-1 \) and \(G - \{v_i, u_i\} \) is connected. Thus, \(v_i \) belongs to only the two blocks \(B \) and \(v_1 u_i \), so \(\deg_G(v_i) = n \) for each \(i = 1, \ldots, n-1 \).

Since \(v_n \) is a cut-vertex, \(N(v_n) \setminus V(B) \neq \emptyset \). If \(v_n \) is adjacent to a \(\gamma_{pr}(G) \)-critical vertex, say \(u_n \), then, arguing as above, \(\deg(u_n) = 1 \), \(\deg(v_n) = n \) and \(G = K_n \circ K_1 \). By Remark 3(i), \(n \) is odd, hence \(G \) belongs to the family \(\mathcal{U} \subseteq B \). If no vertex in \(N(v_n) \setminus V(B) \) is critical, let \(N(v_n) \setminus V(B) = \{w_1, \ldots, w_t\} \) for \(t \geq 1 \). By Theorem 12, each \(w_i \) is adjacent to a critical vertex \(w'_i \neq v_n \), and since \(a(G) = 0 \), \(w'_i \) is a leaf. We show that

(C) \(\{w_1, \ldots, w_t\} \) is an independent set of \(G \).

Suppose (without loss of generality) that \(w_1 w_2 \in E(G) \) and consider \(G_{w_1 w_2} \). Let \(w_1, x_1, x_2, x_3, w_2 \) be the \(w_1 - w_2 \) path in \(G_{w_1 w_2} \) and let \(D \) be a \(\gamma_{pr}(G_{w_1 w_2}) \)-set. Since \(w'_1 \) and \(w'_2 \) are leaves, \(w_1, w_2 \in D \). To dominate \(x_2, \{x_1, x_2, x_3\} \cap D \neq \emptyset \). If \(\{x_1, x_2, x_3\} \cap D = 2 \), then \(D \setminus \{x_1, x_2, x_3\} \) is a paired dominating set (with \(w_1 \) and \(w_2 \) paired) of \(G \) of smaller cardinality than \(D \), contrary to \(\text{msd}(G) = 4 \). Hence assume without loss of generality that \(\{x_1, x_2, x_3\} \cap D = \{x_1\} \), so \(w_1 \) and \(x_1 \) are paired (and \(w'_1 \not\in D \)), while \(w_2 \) is paired with either \(w'_2 \) or \(v_n \). However, each vertex in \(N_G(v_n) \) is adjacent to a leaf and belongs to \(D \), thus \(D \setminus \{v_n\} \) dominates \(G \). Therefore, either \(D \setminus \{x_1, w'_2\} \) or \(D \setminus \{x_1, v_n\} \) is a paired dominating set of \(G \) in which \(w_1 \) and \(w_2 \) are paired, contrary to \(\text{msd}(G) = 4 \). It follows that (C) holds.
Since G is a block graph, w_i and w_j belong to different components of $G - v_n$ for all $i \neq j$.

Consequently, if there exists a vertex $z \notin \{v_n, w'_i\}$ adjacent to w_i, then z and v_n belong to different components of $G - \{w_i, w'_i\}$. But now w_i, w'_i is a type-A edge, which is not the case as $a(G) = 0$. Hence $\deg(w_i) = 2$ and $G \cong K_n \circ^{4t} K_1$. Since $\msd(G) = 4$, n is even, by Remark 3(ii). Therefore $G \in \mathcal{U} \subseteq \mathcal{B}$. Thus (B) holds.

Now suppose $a(G) \geq 1$. If G has a type-A critical cut-vertex u, perform the operation $G \oplus u$; each resulting graph is an msd-4 graph by Proposition 10, and clearly a block graph. Moreover, the copies of u in each graph are γ_{pr}-critical. Repeat this process until no resulting msd-4 block graph has a type-A critical cut-vertex. Let G_1, \ldots, G_k be the resulting graphs. Then each critical vertex of each G_i is a leaf. If any G_i has a type-A critical edge uv, where u is a leaf, perform the operation $G \ominus uv$. Each resulting graph is an msd-4 block graph by Proposition 13. Repeat this process until all resulting graphs H_j satisfy $a(H_j) = 0$. If H_j is a tree, then $H_j \cong S(2, \ldots, 2) \in \mathcal{U}$ by Corollary 5, otherwise $H_j \in \mathcal{U}$ by (B). Now G can be reconstructed by performing the \oplus-operations on the H_j, hence $G \in \mathcal{B}$, as required.

7. Open Problems

We conclude with a short list of open problems for future consideration.

Question 1. Does Theorem 12 hold for all msd-4 graphs?

Define another \oplus-operation as follows.

$\oplus_{u,Q}^{a_1Q_1,a_2Q_2}$. Let G_1 and G_2 be vertex disjoint graphs containing (not necessarily maximal) cliques Q_1 and Q_2 of equal size, and vertices $u_i \in V(Q_i)$ for $i \in \{1, 2\}$.

We denote a graph obtained from G_1 and G_2 by identifying Q_1 and Q_2 into one clique Q, and u_1 and u_2 into one vertex $u = u_1 = u_2$, by $G_1 \oplus_{u,Q}^{u_1Q_1,u_2Q_2} G_2$ (or by $G_1 \oplus_{u_1Q_1,u_2Q_2} G_2$ if u and Q are unimportant).

Note that if the cliques Q_i have order at least three, then identifying the vertices of $Q_i - u_i$ in different ways may yield different graphs. Both operations $\oplus_{u}^{u_1Q_1,a_2Q_2}$ and $\oplus_{v}^{u_1Q_1,a_2Q_2}$ are special cases of $\oplus_{u,Q}^{u_1Q_1,a_2Q_2}$.

Question 2. Let G_1 and G_2 be disjoint msd-4 graphs containing cliques Q_1 and Q_2 of equal size and $\gamma_{pr}(G_1)$-critical vertices $u_i \in V(Q_i)$, $i = 1, 2$. Is it true that for any graph $G = G_1 \oplus_{u,Q}^{u_1Q_1,u_2Q_2} G_2$, u is $\gamma_{pr}(G)$-critical and $\msd_{pr}(G) = 4$?

If G_1 and G_2 are copies of the msd-4 graph in Figure 5, with $u_i = u$, which is γ_{pr}-critical, and Q_1 is the triangle containing u, then both graphs obtainable as $G_1 \oplus_{u,Q}^{u_1Q_1,u_2Q_2} G_2$ are msd-4 graphs having u as critical vertex.
Question 3. Let G be a graph with $\text{msd}_{pr}(G) = 4$. What is the largest number of edges of G that can be subdivided three times before the paired domination number increases? If this number can be arbitrarily high, what is its ratio to the number of edges of G?

Acknowledgement

The authors are grateful to the referees of the first version of this paper for pointing out errors in our work.

References

