ON INDEPENDENT DOMINATION IN PLANAR CUBIC GRAPHS

Gholamreza Abrishami a

Michael A. Henning b,1

AND

Freydoon Rahbarniaa,2

a Department of Applied Mathematics
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran

b Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa

e-mail: gh.abrishamimoghadam@mail.um.ac.ir
mahenning@uj.ac.za
rahbarnia@um.ac.ir

Abstract

A set \(S\) of vertices in a graph \(G\) is an independent dominating set of \(G\) if \(S\) is an independent set and every vertex not in \(S\) is adjacent to a vertex in \(S\). The independent domination number, \(i(G)\), of \(G\) is the minimum cardinality of an independent dominating set. Goddard and Henning [Discrete Math. 313 (2013) 839–854] posed the conjecture that if \(G \notin \{K_{3,3}, C_5 \square K_2\}\) is a connected, cubic graph on \(n\) vertices, then \(i(G) \leq \frac{3}{2}n\), where \(C_5 \square K_2\) is the 5-prism. As an application of known result, we observe that this conjecture is true when \(G\) is 2-connected and planar, and we provide an infinite family of such graphs that achieve the bound. We conjecture that if \(G\) is a bipartite, planar, cubic graph of order \(n\), then \(i(G) \leq \frac{3}{2}n\), and we provide an infinite family of such graphs that achieve this bound.

Keywords: independent domination number, domination number, cubic graphs.

2010 Mathematics Subject Classification: 05C69, 05C10.

1Research supported in part by the South African National Research Foundation and the University of Johannesburg.

2Corresponding author.
1. Introduction

In this note, we continue the study of independent domination in cubic graphs. A set is independent in a graph if no two vertices in the set are adjacent. An independent dominating set, abbreviated ID-set, in a graph is a set that is both dominating and independent. Equivalently, an independent dominating set is a maximal independent set. The independent domination number of a graph G, denoted by $i(G)$, is the minimum cardinality of an independent dominating set, and an independent dominating set of cardinality $i(G)$ in G is called an $i(G)$-set. Independent dominating sets have been studied extensively in the literature (see, for example, [1, 2, 4, 5, 7, 8, 9, 10, 12] and the so-called domination book [6]). A recent survey on independent domination in graphs can be found in [3].

Recall that $K_{3,3}$ denotes the bipartite complete graph with both partite sets on three vertices. The 5-prism, $C_5 \square K_2$, is the Cartesian product of a 5-cycle with a copy of K_2. The graphs $K_{3,3}$ and $C_5 \square K_2$ are shown in Figure 1(a) and 1(b), respectively.

As remarked in [4], the question of best possible bounds on the independent domination number of a connected, cubic graph remains unresolved. Lam, Shiu and Sun [9] established the following upper bound on the independent domination number of a connected, cubic graph. Equality in Theorem 1 holds for the prism $C_5 \square K_2$ (see Figure 1).

Theorem 1 [9], For a connected, cubic graph G on n vertices, $i(G) \leq \frac{2}{5}n$ except for $K_{3,3}$.

Goddard and Henning [3] conjectured that the graphs $K_{3,3}$ and $C_5 \square K_2$ are the only exceptions for an upper bound of $\frac{3}{8}n$. We state their conjecture formally as follows.

Conjecture 2 [3]. If $G \notin \{K_{3,3}, C_5 \square K_2\}$ is a connected, cubic graph on n vertices, then $i(G) \leq \frac{3}{8}n$.

Dorbec et al. [2] proved Conjecture 2 when G does not have a subgraph isomorphic to $K_{2,3}$.
Theorem 3 [2]. If \(G \not\cong C_5 \square K_2 \) is a connected, cubic graph on \(n \) vertices that does not have a subgraph isomorphic to \(K_{2,3} \), then \(i(G) \leq \frac{3}{8} n \).

A graph \(G \) is \(k \)-vertex connected, which we shall simply write as \(k \)-connected, if there does not exist a set of \(k-1 \) vertices whose removal disconnects the graph, i.e., the vertex connectivity of \(G \) is at least \(k \). In particular, if a connected graph does not have a cut-vertex, then it is 2-connected. As a simple application of Theorem 3, we observe that Conjecture 2 is true for 2-connected, planar, cubic graphs.

Theorem 4. If \(G \not\cong C_5 \square K_2 \) is a 2-connected, planar, cubic graph on \(n \) vertices, then \(i(G) \leq \frac{3}{8} n \).

Proof. We show firstly that \(G \) has no subgraph isomorphic to \(K_{2,3} \). Suppose, to the contrary, that \(G \) has a subgraph \(F \), isomorphic to \(K_{2,3} \), with partite sets \(\{a, f\} \) and \(\{b, c, d\} \). Consider an embedding of \(G \) in the plane. For every embedding of \(K_{2,3} \) in the plane there is a cycle which has a vertex in its interior. Without loss of generality, suppose that \(c \) is a vertex in the interior of the cycle \(C \), where \(C: abfda \). Let \(x \) be the neighbor of \(c \) different from \(a \) and \(f \). Either the vertex \(x \) is in the interior of the cycle \(C \) or the vertex \(x \) belongs to \(C \), in which case \(x = b \) or \(x = d \). If \(x = b \), then the vertex \(d \) is a cut-vertex in \(G \), contradicting the 2-connectivity of \(G \). Hence, \(x \neq b \). Analogously, \(x \neq d \). Therefore, the vertex \(x \) is in the interior of \(C \). Renaming vertices, if necessary, we may assume that \(x \) is in the interior of cycle \(abfca \). Let \(X \) be the subgraph of \(G \) that lies in the interior of the cycle \(abfca \). By assumption, \(x \in X \). If the vertex \(b \) is adjacent to a vertex of \(X \), then the vertex \(d \) is a cut-vertex of \(G \), a contradiction. Therefore, the vertex \(b \) is not adjacent to a vertex of \(X \). However, then, the vertex \(c \) is a cut-vertex of \(G \), a contradiction. Hence, \(G \) has no subgraph isomorphic to \(K_{2,3} \). Thus, by Theorem 3, \(i(G) \leq 3n/8 \). \(\blacksquare \)

We pose the following conjecture.

Conjecture 5. If \(G \not\cong C_5 \square K_2 \) is a connected, planar, cubic graph on \(n \) vertices, then \(i(G) \leq \frac{3}{8} n \).

The following conjecture was posed by Zhu and Wu [13].

Conjecture 6 [13]. If \(G \) is a 2-connected, planar, cubic graph of order \(n \), then \(\gamma(G) \leq \frac{1}{3} n \).

We pose the following two conjectures.

Conjecture 7. If \(G \) is a bipartite, planar, cubic graph of order \(n \), then \(i(G) \leq \frac{1}{3} n \).

Conjecture 8. If \(G \) is a bipartite, planar, cubic graph of order \(n \), then \(\gamma(G) \leq \frac{1}{3} n \).
We remark that every bipartite, cubic graph has no cut-vertex, and therefore each of its components is a 2-connected, cubic (bipartite) graph. Hence, Conjecture 6 implies Conjecture 8, and so Conjecture 8 is a weaker conjecture than Conjecture 6. We also remark that Conjecture 7 implies Conjecture 8, and so Conjecture 8 is a weaker conjecture than Conjecture 7. A computer search confirms that Conjecture 7 is true when $n \leq 24$.

We have three immediate aims in this paper.

Our first aim is to provide an infinite family, G_{cubic}, of 2-connected, planar, cubic graphs that achieve the upper bound of Theorem 4. The family G_{cubic} is constructed in Section 2.

Our second aim is to provide an infinite family, F_{cubic}, of connected, planar, cubic graphs that are not 2-connected that achieve the upper bound of Conjecture 5. The family F_{cubic} is constructed in Section 3.

Our third aim is to provide an infinite family, H_{cubic}, of bipartite, planar, cubic graphs that achieve the upper bound of Conjecture 7 and Conjecture 8. The family H_{cubic} is constructed in Section 4.

For $k \geq 1$, we use the notation $[k] = \{1, \ldots, k\}$.

2. THE GRAPH FAMILY G_{cubic}

We denote the graph obtained from a 5-prism by deleting an edge that does not belong to a 5-cycle by $(C_5 \Box K_2)^-$. The graph $(C_5 \Box K_2)^-$ is illustrated in Figure 2.

![Figure 2](image-url)

Figure 2. The graph $(C_5 \Box K_2)^-$.

Let $F \cong (C_5 \Box K_2)^-$, where $V(F) = \{r_1, r_2, \ldots, r_5, s_1, s_2, \ldots, s_5\}$, where $r_1r_2 \cdots r_5r_1$ and $s_1s_2 \cdots s_5s_1$ are the two 5-cycles in F and $r_is_i \in E(F)$ for $i \in \{2, 3, 4, 5\}$. Let $H \cong (C_5 \Box K_2)^-$, where $V(H) = \{p_1, p_2, \ldots, p_5, q_1, q_2, \ldots, q_5\}$, where $p_1p_2 \cdots p_5p_1$ and $q_1q_2 \cdots q_5q_1$ are the two 5-cycles in H and $p_iq_i \in E(H)$ for $i \in \{2, 3, 4, 5\}$. An infinite family, G_{cubic}, of 2-connected, planar, cubic graphs can be constructed as follows. For $k \geq 1$, define the graph G_k as described below. Consider two copies of the path P_{4k+2} with respective vertex sequences...
On Independent Domination in Planar Cubic Graphs

c_0d_0a_1b_1c_1d_1 \cdots a_kb_kc_kd_k \text{ and } y_0z_0w_1x_1y_1z_1 \cdots w_kx_ky_kz_k. \text{ Join } c_0 \text{ to } z_0, \text{ and join } d_0 \text{ to } y_0, \text{ and for each } i \in [k], \text{ join } a_i \text{ to } w_i, \text{ b_i to } x_i, \text{ c_i to } z_i, \text{ and } d_i \text{ to } y_i.

To complete } G_k \text{ add a disjoint copy of } F \text{ and } H, \text{ and join } c_0 \text{ to } r_1, \text{ y_0 to } s_1, \text{ d_k to } p_1, \text{ and } z_k \text{ to } q_1. \text{ We note that the graph } G_k \text{ has order } 8k + 24. \text{ Let } G_{\text{cubic}} = \{ G_k : k \geq 1 \}. \text{ An embedding of the graph } G_2 \in G_{\text{cubic}} \text{ (of order 40) in the plane is illustrated in Figure 3.}

Figure 3. A planar drawing of the graph } G_2.

For simplicity, the graph } G_2 \text{ is redrawn in Figure 4.

Figure 4. The graph } G_2.

We are now in a position to prove the following result.

Proposition 9. If } G \in G_{\text{cubic}} \text{ has order } n, \text{ then } i(G) = \frac{3}{8}n.

Proof. Let } G \in G_{\text{cubic}} \text{ have order } n. \text{ Then, } G = G_k \text{ for some } k \geq 1, \text{ and so } G \text{ has order } n = 8k + 24. \text{ We show that } i(G) = 3k + 9. \text{ Let } V_0 = \{ c_0, d_0, y_0, z_0 \}, \text{ and let } V_i = \{ a_i, b_i, c_i, d_i, w_i, x_i, y_i, z_i \} \text{ for } i \in [k]. \text{ The set } \{r_2, r_4, s_1, s_3\} \cup \{ p_2, p_4, q_1, q_3 \} \cup \{ z_0 \} \cup \left(\bigcup_{i=1}^{k} \{ a_i, c_i, y_i \} \right)

is an ID-set of } G \text{ of cardinality } 3k + 9, \text{ implying that } i(G) \leq 3k + 9. \text{ We show next that } i(G) \geq 3k + 9. \text{ We adopt the following notation. If } X \text{ is a subset of vertices of } G, \text{ we let } X_F = X \cap V(F) \text{ and let } X_H = X \cap V(H). \text{ Further, we let } X_0 = V_0 \cap X, \text{ and for } i \in [k], \text{ we let } X_i = V_i \cap X.
Let X be an $i(G)$-set. In order to dominate $\{d_0, z_0\}$, we note that $|X_0| \geq 1$ since at most one of q_1 and w_1 belong to X. In order to dominate $\{b_1, c_1, x_1, y_1\}$, we note that $|X_1| \geq 2$. Let $I_X = \{ i \in [k] : |X_i| = 2 \}$. Among all $i(G)$-sets, let X be chosen so that

1. $|X_F| + |X_H|$ is maximum.
2. Subject to (1), $|X_0|$ is minimum.
3. Subject to (2), $|I_X|$ is minimum.

We proceed further with the following series of claims. The statement and proof of our first claim is analogous to the statement and proof of a similar claim in [4]. For completeness, we include the proof of this claim.

Claim A. If $\{d_i, z_i\} \subseteq X_i$ for some $i \in [k]$, then $|X_i| = 3$ or $|X_i| = 4$. Further, if $|X_i| = 3$, then either a_i or w_i is not dominated by X_i.

Proof. If $\{a_i, w_i\} \cap X_i \neq \emptyset$, then either $a_i \in X_i$, in which case $x_i \in X_i$ in order to dominate x_i, or $w_i \in X_i$, in which case $b_i \in X_i$ in order to dominate b_i. In both cases, $|X_i| = 4$. On the other hand, if $\{a_i, w_i\} \cap X_i = \emptyset$, then either $b_i \in X_i$, in which case w_i is not dominated by X_i, or $x_i \in X_i$, in which case a_i is not dominated by X_i.

Claim B. $3 \leq |X_H| \leq 4$. Further, if $|X_H| = 3$, then neither p_1 nor q_1 belongs to X_H, and exactly one of p_1 and q_1 is not dominated by X_H.

Proof. Suppose that $\{p_1, q_1\} \subseteq X_H$. In this case, $p_3 \in X_H$ or $q_3 \in X_H$. We may assume, by symmetry, that $p_3 \in X_H$, which forces q_3 to belong to X_H, and so $|X_H| = 4$. Suppose that exactly one of p_1 and q_1 belongs to X_H. We may assume, by symmetry, that $p_1 \in X_H$, and so $q_1 \notin X_H$. In order to dominate q_2, either $q_2 \in X_H$ or $q_3 \in X_H$. If $q_2 \in X_H$, then in order to dominate p_3 and q_3, we note that X_H contains two vertices in addition to p_1 and q_2, and so $|X_H| = 4$. If $q_3 \in X_H$, then $X_H = \{p_1, p_3, q_3, q_5\}$, and once again $|X_H| = 4$. Suppose that neither p_1 nor q_1 belongs to X_H. In this case, either $p_2 \in X_H$ or $q_2 \in X_H$. We may assume, by symmetry, that $p_2 \in X_H$. Now, either $|X_H| = 4$ or $X_H = \{p_2, p_5, q_3\}$ or $X_H = \{p_2, p_5, q_4\}$. In particular, if $|X_H| = 3$, then q_1 is not dominated by X_H.

By symmetry, the proof of Claim C is analogous to that of Claim B, and is therefore omitted.

Claim C. $3 \leq |X_F| \leq 4$. Further, if $|X_F| = 3$, then neither r_1 nor s_1 belongs to X_F, and exactly one of r_1 and s_1 is not dominated by X_F.

Claim D. $|X_F| = |X_H| = 4$.

Proof. Suppose, to the contrary, that \(|X_F| \neq 4\) or \(|X_H| \neq 4\). By symmetry, we may assume that \(|X_H| \neq 4\). Then, by Claim B, \(|X_H| = 3\), neither \(p_1\) nor \(q_1\) belongs to \(X_H\), and exactly one of \(p_1\) and \(q_1\) is not dominated by \(X_H\). We may assume, by symmetry, that \(p_1\) is not dominated by \(X_H\). In order to dominate the vertex \(p_1\), we have that \(d_k \in X_k\). But then \(z_k \in X_k\) in order to dominate \(z_k\), noting that \(q_1 \notin X_H\). Thus, \(\{d_k, z_k\} \subseteq X_k\). By Claim A, \(|X_k| = 3\) or \(|X_k| = 4\).

Suppose that \(|X_k| = 4\). In this case, either \(X_k = \{a_k, d_k, x_k, z_k\}\) or \(X_k = \{b_k, d_k, w_k, z_k\}\). We may assume, by symmetry, that \(X_k = \{a_k, d_k, x_k, z_k\}\). But then removing the five vertices in \(X_H \cup \{d_k, z_k\}\) from \(X\), and replacing them with the five vertices \(\{c_k, p_1, p_3, q_1, q_4\}\) produces a new \(i(G)\)-set \(X'\) satisfying \(|X'_F| = |X_F|\) and \(|X'_H| > |X_H|\), which is contrary to our choice of the set \(X\). Hence, \(|X_k| = 3\).

Since \(|X_k| = 3\), either \(X_k = \{b_k, d_k, z_k\}\) or \(X_k = \{x_k, d_k, z_k\}\). We may assume, by symmetry, that \(X_k = \{b_k, d_k, z_k\}\). But then removing the five vertices in \(X_H \cup \{d_k, z_k\}\) from \(X\), and replacing them with the five vertices \(\{y_k, p_1, p_3, q_1, q_4\}\) produces a new \(i(G)\)-set \(X'\) satisfying \(|X'_F| = |X_F|\) and \(|X'_H| > |X_H|\), which is contrary to our choice of the set \(X\).

Claim E. \(|X_0| = 1\).

Proof. As observed earlier, \(|X_0| \geq 1\). Suppose, to the contrary, that \(|X_0| \geq 2\). Then, either \(X_0 = \{c_0, y_0\}\) or \(X_0 = \{d_0, z_0\}\). If \(X_0 = \{c_0, y_0\}\), then removing the four vertices in \(X_F\) from \(X\), and replacing them with the three vertices \(\{r_2, r_5, s_3\}\) produces an ID-set of \(G\) of cardinality \(|X| - 1\), contradicting the fact that \(X\) is an \(i(G)\)-set. Hence, \(X_0 = \{d_0, z_0\}\). This implies that neither \(a_1\) nor \(w_1\) belongs to \(X\), and at most one of \(b_1\) and \(x_1\) belongs to \(X\). By symmetry, we may assume that \(b_1 \notin X\). The set \(X' = (X \setminus \{d_0\}) \cup \{a_1\}\) produces a new \(i(G)\)-set satisfying \(|X'_F| + |X'_H| = |X_F| + |X_H|\) and \(|X'_0| < |X_0|\), which is contrary to our choice of the set \(X\).

The proof of the following claim uses some of the arguments presented in [4].

Claim F. \(I_X = \emptyset\).

Proof. Suppose, to the contrary, that \(|I_X| \geq 1\). Let \(i\) be the largest integer such that \(|X_i| = 2\). In order to dominate \(\{b_i, c_i, x_i, y_i\}\), we may assume, by symmetry, that \(X_i = \{b_i, y_i\}\) or \(X_i = \{b_i, z_i\}\) or \(X_i = \{b_i, d_i\}\) or \(X_i = \{c_i, y_i\}\). In all four cases, the vertex \(w_i\) is not dominated by \(X_i\). If \(i = 1\), then this would imply that in order to dominate the vertex \(w_i\), we have that \(z_0 \in X_0\). But then \(d_0 \in X_0\), and so \(X_0 = \{d_0, z_0\}\), contradicting Claim E.

Thus, \(i \geq 2\). We now consider the set \(X_{i-1}\). In order to dominate the vertex \(w_i\), we have that \(z_{i-1} \in X_{i-1}\). But then \(d_{i-1} \in X_{i-1}\) in order to dominate \(d_{i-1}\). Thus, \(\{d_{i-1}, z_{i-1}\} \subseteq X_{i-1}\). By Claim A, either \(|X_{i-1}| = 3\) or \(|X_{i-1}| = 4\).
Suppose that \(|X_{i-1}| = 4\). We may assume, by symmetry, that \(a_{i-1} \in X_{i-1}\); that is, \(X_{i-1} = \{a_{i-1}, d_{i-1}, x_{i-1}, z_{i-1}\}\). But then the set \(X' = (X \setminus \{d_{i-1}, x_{i-1}, z_{i-1}\}) \cup \{c_{i-1}, y_{i-1}, w_{i}\}\) is an \(i(G)\)-set such that \(|X'_F| + |X'_H| = |X_F| + |X_H|\), \(|X'_0| = |X_0|\), and \(|I_{X'}| < |I_X|\), contradicting our choice of the set \(X\). Hence, \(|X_{i-1}| = 3\).

Since \(|X_{i-1}| = 3\), either \(X_{i-1} = \{b_{i-1}, d_{i-1}, z_{i-1}\}\) or \(X_{i-1} = \{x_{i-1}, d_{i-1}, z_{i-1}\}\). We may assume, by symmetry, that \(X_{i-1} = \{b_{i-1}, d_{i-1}, z_{i-1}\}\). Thus, \(w_{i-1}\) is not dominated by \(X_{i-1}\). If \(i = 2\), then this would imply that in order to dominate the vertex \(w_{i-1}\), we have that \(z_0 \in X_0\). But then \(d_0 \in X_0\), and so \(X_0 = \{d_0, z_0\}\), contradicting Claim E. Thus, \(i \geq 3\). We now consider the set \(X_{i-2}\). In order to dominate the vertex \(w_{i-1}\), we have that \(\{d_{i-2}, z_{i-2}\} \subseteq X_{i-2}\).

Continuing this process, there is a smallest positive integer \(j < i\) such that \(\{d_{i-j}, z_{i-j}\} \subseteq X_{i-j}\) and \(|X_{i-j}| = 4\). We may assume, by symmetry, that \(a_{i-j} \in X_{i-j}\); that is, \(X_{i-j} = \{a_{i-j}, d_{i-j}, x_{i-j}, z_{i-j}\}\). We now define the set \(X'\) of vertices of \(G\) as follows. For \(\ell \in [k]\), let \(X'_\ell = V_i \cap X'\) be the set defined as follows. Let \(X'_i = X_i \cup \{w_i\}\) and let \(X'_{i-j} = \{a_{i-j}, c_{i-j}, y_{i-j}\}\). If \(j \geq 2\), then for \(i - j + 1 \leq \ell \leq i - 1\), let \(X'_\ell = \{a_{\ell}, c_{\ell}, y_{\ell}\}\). If \(j \leq i - 1\), then for \(0 \leq \ell \leq i - j - 1\), let \(X'_\ell = X_F\). If \(i < k\), then for \(i + 1 \leq \ell \leq k\), let \(X'_\ell = X_F\). Then, \(|X'_i| = |X_i| + 1 = 3\), \(|X'_{i-j}| = |X_{i-j}| - 1 = 3\), and \(|X'_{\ell}| = |X_{\ell}|\) for all \(\ell \notin \{i, i-j\}\), where \(\ell \in [k] \cup \{0\}\).

Further, let \(X'_F = X_F\) and \(X'_H = X_H\). Thus,

\[X' = X'_F \cup X'_H \cup \bigcup_{i=1}^{k} X'_i,\]

and \(|X'| = |X|\). Since the set \(X\) is an ID-set, by construction so too is the set \(X'\), implying that the set \(X'\) is an \(i(G)\)-set. However, \(|X'_F| = |X_F|\), \(|X'_H| = |X_H|\), \(|X'_0| = |X_0|\) and \(|I_{X'}| < |I_X|\), contradicting our choice of the set \(X\). Consequently, \(I_X = \emptyset\).

By Claim F, \(I_X = \emptyset\), implying that \(|X_i| \geq 3\) for all \(i \in [k]\). Thus, by Claim D and Claim E, we note that \(i(G) = |X| \geq 3k + 9\). As observed earlier, \(i(G) \leq 3k + 9\). Consequently, \(i(G) = 3k + 9 = 3n/8\). This completes the proof of Proposition 9.

3. The Graph Family \(\mathcal{F}_{\text{cubic}}\)

Following the notation introduced in Section 2, we construct an infinite family, \(\mathcal{F}_{\text{cubic}}\), of connected, planar, cubic graphs that are not 2-connected as follows. Let \(G_1^*\) be the graph obtained from the graph \(G_1 \in \mathcal{G}_{\text{cubic}}\) by deleting the vertices in \(V(F)\), and adding a new vertex \(v\) and adding the edges \(vc_0\) and \(vy_0\). The resulting graph, \(G_1^*\), is illustrated in Figure 5.
We note that G^*_1 has order 23. An analogous, but simpler, proof than that of Proposition 9 (or simple use a computer) shows that $i(G^*_1) = 9$. The set $\{p_1, p_3, q_1, q_4, c_1, y_1, d_0, z_0, v\}$ is an example of an $i(G^*_1)$-set.

For $k \geq 3$, let F_1, F_2, \ldots, F_k be k vertex-disjoint copies of the graph G^*_1, and let v_i be the vertex of degree 2 in F_i for $i \in [k]$. Let $C: u_1 u_2 \cdots u_k u_1$ be a k-cycle that has no vertex in common with these k copies of the graph G^*_1. Let F^*_k be the graph obtained from the disjoint union, $F_1 \cup F_2 \cup \cdots \cup F_k \cup C$, of these $k + 1$ graphs by adding the k edges $u_i v_i$ for $i \in [k]$. Let $\mathcal{F}_{cubic} = \{ F^*_k : k \geq 3 \}$. The graph F^*_4 (of order 96) in the family \mathcal{F}_{cubic} is illustrated in Figure 6.

For each $k \geq 3$, the graph F^*_k has order $n = 24k$. Further, since $i(G^*_1) = 9$ and there exists an $i(G^*_1)$-set containing the vertex v of degree 2 in G^*_1, we observe that $i(F^*_k) = 9k = 3n/8$. We state this formally as follows.

Proposition 10. If $G \in \mathcal{F}_{cubic}$ has order n, then G is a connected, planar, cubic graph satisfying $i(G) = \frac{3}{8}n$.

4. **The Graph Family \mathcal{H}_{cubic}**

An infinite family, \mathcal{H}_{cubic}, of bipartite, planar, cubic graphs can be constructed as follows. For $k \geq 2$, define the graph H_k as described below. Consider two copies of the cycle C_{2k} with respective vertex sequences $a_1 b_1 a_2 b_2 \cdots a_k b_k a_1$ and $c_1 d_1 c_2 d_2 \cdots c_k d_k c_1$. To complete H_k, add $2k$ new vertices e_1, e_2, \ldots, e_k and
Let S be a set of vertices in a graph G and let $v \in S$. The open neighborhood of v in G is $N_G(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of v is $N_G[v] = \{v\} \cup N_G(v)$. The S-private neighborhood of v is defined by $pn[v,S] = \{w \in V(G) : N_G[w] \cap S = \{v\}\}$. A classical result of Ore [11] states that if S is dominating set in a graph G, then S is a minimal dominating set of G if and only if for each $v \in S$, $pn[v,S] \neq \emptyset$.

We are now in a position to prove the following result.

Proposition 11. If $G \in \mathcal{H}_{\text{cubic}}$ has order n, then $\gamma(G) = i(G) = \frac{1}{2}n$.

Proof. Let $G \in \mathcal{H}_{\text{cubic}}$ have order n. Then, $G = H_k$ for some $k \geq 2$, and so G has order $n = 6k$. We show that $\gamma(G) = i(G) = 2k$. Let $X_i = \{a_i, b_i, c_i, d_i, e_i, f_i\}$ for $i \in [k]$. The set $D_k = \bigcup_{i=1}^k \{a_i, b_i\}$ is an ID-set of G of cardinality $2k$, implying that $i(G) \leq |D_k| = 2k$. We show next that $\gamma(G) \geq 2k$. Let S be a $\gamma(G)$-set. By the minimality of S, and by construction of the graph G, we note that $1 \leq |S \cap X_i| \leq 4$ for all $i \in [k]$. For $j \in [4]$, let $S_j = \{i \in [k] : |S \cap X_i| = j\}$. Thus, (S_1, S_2, S_3, S_4) is a (weak) partition of the set $[k]$, where some of the sets may be empty. We note that $|S| = \sum_{i=1}^k |S_i|$ and $k = \sum_{i=1}^4 |S_i|$. In what follows, we take addition modulo k. Among all $\gamma(G)$-sets, we choose S so that $|S_4|$ is a minimum. We proceed further with the following two claims.

Claim I. $|S_4| = 0$.

Proof. Suppose, to the contrary, that $|S_4| \geq 1$. Thus, $|S \cap X_i| = 4$ for some $i \in [k]$. By the minimality of the set S, we note that $S \cap X_i = \{a_i, b_i, c_i, d_i\}$. By Ore’s Theorem [11] and the structure of the graph G, we note that $pn[a_i, S] = \{b_{i-1}\}$ and $pn[c_i, S] = \{d_{i-1}\}$. This implies that $S \cap X_{i-1} = \{e_{i-1}\}$. We now consider the set $S' = (S \setminus \{a_i, c_i\}) \cup \{e_i, f_{i-1}\}$. The resulting set S' is a dominating set of G satisfying $|S'| = |S|$, and is therefore a $\gamma(G)$-set. However, $|S'_4| = |S_4| - 1$, contradicting our choice of the set S. Therefore, $|S_4| = 0$.

Figure 7. The bipartite, planar, cubic graph H_5.

$G.\text{Abrishami, M.A.\ Henning and F.\ Rahbarnia}$
Claim II. \(|S_3| \geq |S_1|\).

Proof. Suppose that \(i \in S_1\) for some \(i \in [k]\), and so \(|S \cap X_i| = 1\). In order to dominate \(e_i\) and \(f_i\), we note that either \(e_i \in S\) or \(f_i \in S\). Suppose that \(e_i \in S\).

In order to dominate \(b_i\), the vertex \(a_{i+1} \in S\), while in order to dominate \(d_i\), the vertex \(c_{i+1} \in S\). In order to dominate the vertex \(f_{i+1}\), the set \(S\) contains a vertex of \(X_{i+1}\) different from \(a_{i+1}\) and \(c_{i+1}\), implying that \(|S \cap X_{i+1}| \geq 3\). By Claim I, \(|S \cap X_{i+1}| \leq 3\). Consequently, \(|S \cap X_{i+1}| = 3\), and so \(i + 1 \in S_3\). Hence, if \(e_i \in S\), then \(i + 1 \in S_3\), \(\{a_{i+1}, c_{i+1}\} \subset S\) and \(|S \cap \{b_{i+1}, d_{i+1}\}| \leq 1\). Analogously, if \(f_i \in S\), then \(i - 1 \in S_3\), \(\{b_{i-1}, d_{i-1}\} \subset S\) and \(|S \cap \{a_{i-1}, c_{i-1}\}| \leq 1\). This implies that if \(i \in S_1\), then either \(e_i \in S\), in which case we can uniquely associate \(i + 1 \in S_3\) with \(i\), or \(f_i \in S\), in which case we can uniquely associate \(i - 1 \in S_3\) with \(i\). Therefore, \(|S_3| \geq |S_1|\).

We now return to the proof of Proposition 11. By Claim I, \(|S_4| = 0\), and so \(|S| = \sum_{i=1}^k i|S_i|\) and \(k = \sum_{i=1}^3 |S_i|\).

By Claim II, \(|S_3| \geq |S_1|\), and so \(k = |S_1| + |S_2| + |S_3| \geq 2|S_1| + |S_2|\), or, equivalently, \(k - 2|S_1| - |S_2| \geq 0\). Thus,

\[
|S| = |S_1| + 2|S_2| + 3|S_3| = |S_1| + 2|S_2| + 3(k - |S_1| - |S_2|) = 3k - 2|S_1| - |S_2| = 2k + (k - 2|S_1| - |S_2|) \geq 2k.
\]

Thus, \(2k \leq |S| = \gamma(G) \leq i(G) \leq 2k\). Consequently, we must have equality throughout this inequality chain. In particular, \(\gamma(G) = i(G) = 2k = \frac{1}{2}n\). ■

5. Summary of Results

In this paper, we consider five conjectures which we name as Conjectures 2, 5, 6, 7 and 8. We first consider Conjecture 2. We prove in Theorem 4 that Conjecture 2 is true for 2-connected graphs. Our first main result constructs an infinite family, \(G_{\text{cubic}}\), of 2-connected, planar, cubic graphs in Section 2 to show that in this case the bound is tight.

We next consider Conjecture 5. By our previous result, it suffices to prove Conjecture 5 for connected, planar, cubic graphs that contain cut-vertices. Our second result constructs an infinite family, \(F_{\text{cubic}}\), of connected, planar, cubic graphs that contain cut-vertices in Section 3 to show that if Conjecture 5 is true for graphs with cut-vertices, then the bound is tight.

We finally consider Conjectures 6, 7 and 8. Our third result constructs an infinite family, \(H_{\text{cubic}}\), of bipartite, planar, cubic graphs in Section 4 to show that if Conjectures 7 and 8 are true, then the bounds are tight.
Acknowledgments

The authors wish to express their thanks to Amin Abrishami for his assistance with computer computations.

References

doi:10.1007/BF01788145

doi:10.1002/jgt.21855

doi:10.1016/j.disc.2012.11.031

doi:10.1007/s00026-012-0155-4

doi:10.1007/s10878-010-9336-4

doi:10.1016/j.dam.2013.08.035

[8] A.V. Kostochka, The independent domination number of a cubic 3-connected graph can be much larger than its domination number, Graphs Combin. 9 (1993) 235–237.
doi:10.1007/BF02988312

doi:10.1016/S0012-365X(98)00350-1

doi:10.1090/coll/038

doi:10.1016/j.disc.2012.01.003

Received 2 August 2017
Revised 1 December 2017
Accepted 1 December 2017