PANCYCLICITY WHEN EACH CYCLE CONTAINS k CHORDS

Vladislav Taranchuk

Department of Mathematics and Statistics
California State University, Sacramento
Sacramento, CA

e-mail: Vladislavt3@outlook.com

Abstract

For integers $n \geq k \geq 2$, let $c(n,k)$ be the minimum number of chords that must be added to a cycle of length n so that the resulting graph has the property that for every $l \in \{k, k+1, \ldots, n\}$, there is a cycle of length l that contains exactly k of the added chords. Affif Chaouche, Rutherford, and Whitty introduced the function $c(n,k)$. They showed that for every integer $k \geq 2$, $c(n,k) \geq \Omega_k(n^{1/k})$ and they asked if $n^{1/k}$ gives the correct order of magnitude of $c(n,k)$ for $k \geq 2$. Our main theorem answers this question as we prove that for every integer $k \geq 2$, and for sufficiently large n, $c(n,k) \leq k\lceil n^{1/k} \rceil + k^2$. This upper bound, together with the lower bound of Affif Chaouche et al., shows that the order of magnitude of $c(n,k)$ is $n^{1/k}$.

Keywords: pancyclicity, chords.

2010 Mathematics Subject Classification: 05D99, 11B75.

References

Received 26 September 2016
Revised 11 December 2017
Accepted 11 December 2017