CONVEX AND WEAKLY CONVEX DOMINATION IN PRISM GRAPHS

Monika Rosicka

Faculty of Mathematics, Physics and Informatics
University of Gdańsk, 80–952 Gdańsk, Poland

Institute of Theoretical Physics and Astrophysics and
National Quantum Information Centre in Gdańsk
81–824 Sopot, Poland

e-mail: mrosicka@inf.ug.edu.pl

Abstract

For a given graph \(G = (V, E) \) and permutation \(\pi : V \mapsto V \) the prism \(\pi G \) of \(G \) is defined as follows: \(V(\pi G) = V(G) \cup V(G') \), where \(G' \) is a copy of \(G \), and \(E(\pi G) = E(G) \cup E(G') \cup M_\pi \), where \(M_\pi = \{ uv' : u \in V(G), v = \pi(u) \} \) and \(v' \) denotes the copy of \(v \) in \(G' \).

We study and compare the properties of convex and weakly convex dominating sets in prism graphs. In particular, we characterize prism \(\gamma_{\text{con}} \)-fixers and -doublers. We also show that the differences \(\gamma_{\text{wcon}}(G) - \gamma_{\text{wcon}}(\pi G) \) and \(\gamma_{\text{wcon}}(\pi G) - 2\gamma_{\text{wcon}}(G) \) can be arbitrarily large, and that the convex domination number of \(\pi G \) cannot be bounded in terms of \(\gamma_{\text{con}}(G) \).

Keywords: domination, prism graphs.

2010 Mathematics Subject Classification: 05C69.

References

doi:10.7151/dmgt.1233

doi:10.7151/dmgt.1631

 doi:10.1007/s10587-014-0136-3

Received 24 November 2017
Revised 3 September 2018
Accepted 3 September 2018