GENERALIZED SUM LIST COLORINGS OF GRAPHS

ARNFRIED KEMNITZ

MASSIMILIANO MARANGIO

Computational Mathematics
Technical University Braunschweig
Universitätsplatz 2, 38106 Braunschweig, Germany
e-mail: a.kemnitz@tu-bs.de
m.marangio@tu-bs.de

AND

MARGIT VOIGT

Faculty of Information Technology and Mathematics
University of Applied Sciences
Friedrich-List-Platz 1, 01069 Dresden, Germany
e-mail: mvoigt@informatik.htw-dresden.de

Abstract

A (graph) property P is a class of simple finite graphs closed under isomorphisms. In this paper we consider generalizations of sum list colorings of graphs with respect to properties P.

If to each vertex v of a graph G a list $L(v)$ of colors is assigned, then in an (L,P)-coloring of G every vertex obtains a color from its list and the subgraphs of G induced by vertices of the same color are always in P. The P-sum choice number $\chi^P_{sc}(G)$ of G is the minimum of the sum of all list sizes such that, for any assignment L of lists of colors with the given sizes, there is always an (L,P)-coloring of G.

We state some basic results on monotonicity, give upper bounds on the P-sum choice number of arbitrary graphs for several properties, and determine the P-sum choice number of specific classes of graphs, namely, of all complete graphs, stars, paths, cycles, and all graphs of order at most 4.

Keywords: sum list coloring, sum choice number, generalized sum list coloring, additive hereditary graph property.

2010 Mathematics Subject Classification: 05C15.
References

Received 16 October 2017
Revised 5 August 2018
Accepted 6 September 2018