TOTAL FORCING SETS AND ZERO FORCING SETS IN TREES

RANDY DAVILA1,2 AND MICHAEL A. HENNING1

1Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park 2006, South Africa

2Department of Mathematics and Statistics
University of Houston-Downtown
Houston, TX 77002, USA

e-mail: davilar@uhd.edu
mahenning@uj.ac.za

Abstract

A dynamic coloring of the vertices of a graph G starts with an initial subset S of colored vertices, with all remaining vertices being non-colored. At each discrete time interval, a colored vertex with exactly one non-colored neighbor forces this non-colored neighbor to be colored. The initial set S is called a forcing set of G if, by iteratively applying the forcing process, every vertex in G becomes colored. If the initial set S has the added property that it induces a subgraph of G without isolated vertices, then S is called a total forcing set in G. The minimum cardinality of a total forcing set in G is its total forcing number, denoted $F_t(G)$. We prove that if T is a tree of order $n \geq 3$ with maximum degree Δ and with n_1 leaves, then $n_1 \leq F_t(T) \leq \frac{1}{\Delta}((\Delta - 1)n + 1)$. In both lower and upper bounds, we characterize the infinite family of trees achieving equality. Further we show that $F_t(T) \geq F(T) + 1$, and we characterize the extremal trees for which equality holds.

Keywords: forcing set, forcing number, total forcing set, total forcing number.

2010 Mathematics Subject Classification: 05C69.

doi:10.1016/j.dam.2017.11.015

doi:10.1137/S0895480100375831

doi:10.1007/978-1-4614-6525-6

doi:10.1016/j.dam.2012.04.003

doi:10.1016/j.dam.2016.05.009

doi:10.1090/coll/038

doi:10.1016/j.laa.2015.06.025

Received 28 September 2017
Revised 13 March 2018
Accepted 23 March 2018