ON FACTORABLE BIGRAPHIC PAIRS

JIAN-HUA YIN AND SHA-SHA LI

Department of Mathematics
College of Information Science and Technology
Hainan University, Haikou 570228, P.R. China

Abstract

Let $S = (a_1, ..., a_m; b_1, ..., b_n)$, where $a_1, ..., a_m$ and $b_1, ..., b_n$ are two sequences of nonnegative integers. We say that S is a bigraphic pair if there exists a simple bipartite graph G with partite sets \{x_1, x_2, ..., x_m\} and \{y_1, y_2, ..., y_n\} such that $d_G(x_i) = a_i$ for $1 \leq i \leq m$ and $d_G(y_j) = b_j$ for $1 \leq j \leq n$. In this case, we say that G is a realization of S. Analogous to Kundu's k-factor theorem, we show that if $(a_1, a_2, ..., a_m; b_1, b_2, ..., b_n)$ and $(a_1 - e_1, a_2 - e_2, ..., a_m - e_m; b_1 - f_1, b_2 - f_2, ..., b_n - f_n)$ are two bigraphic pairs satisfying $k \leq f_i \leq k + 1$, $1 \leq i \leq n$ (or $k \leq e_i \leq k + 1$, $1 \leq i \leq m$), for some $0 \leq k \leq m - 1$ (or $0 \leq k \leq n - 1$), then $(a_1, a_2, ..., a_m; b_1, b_2, ..., b_n)$ has a realization containing an $(e_1, e_2, ..., e_m; f_1, f_2, ..., f_n)$-factor. For $m = n$, we also give a necessary and sufficient condition for an $(k^n; k^n)$-factorable bigraphic pair to be connected $(k^n; k^n)$-factorable when $k \geq 2$. This implies a characterization of bigraphic pairs with a realization containing a Hamiltonian cycle.

Keywords: degree sequence, bigraphic pair, Hamiltonian cycle.

2010 Mathematics Subject Classification: 05C07.

References

1Supported by National Natural Science Foundation of China (Grant No. 11561017) and Hainan Provincial Natural Science Foundation of China (Grant No. 2016CXTD004).

Received 15 September 2017
Revised 5 May 2018
Accepted 5 May 2018