DECOMPOSING THE COMPLETE GRAPH INTO HAMILTONIAN PATHS (CYCLES) AND 3-STARS

HUNG-CIH LEE
Department of Information Technology
Ling Tung University
Taichung 40852, Taiwan
e-mail: birdy@teamail.ltu.edu.tw

AND

ZHEN-CHUN CHEN
Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan
e-mail: amco0624@yahoo.com.tw

Abstract

Let \(H \) be a graph. A decomposition of \(H \) is a set of edge-disjoint subgraphs of \(H \) whose union is \(H \). A Hamiltonian path (respectively, cycle) of \(H \) is a path (respectively, cycle) that contains every vertex of \(H \) exactly once. A \(k \)-star, denoted by \(S_k \), is a star with \(k \) edges. In this paper, we give necessary and sufficient conditions for decomposing the complete graph into \(\alpha \) copies of Hamiltonian path (cycle) and \(\beta \) copies of \(S_3 \).

Keywords: decomposition, complete graph, Hamiltonian path, Hamiltonian cycle, star.

2010 Mathematics Subject Classification: 05C70, 05C38.

References

doi:10.1007/s00373-003-0530-3

doi:10.1016/0012-365X(79)90034-7

Received 12 January 2018
Revised 14 May 2018
Accepted 14 May 2018