DECOMPOSING THE COMPLETE GRAPH INTO HAMILTONIAN PATHS (CYCLES) AND 3-STARS

Hung-Chih Lee
Department of Information Technology
Ling Tung University
Taichung 40852, Taiwan
e-mail: birdy@teamail.ltu.edu.tw

and

Zhen-Chun Chen
Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan
e-mail: amco0624@yahoo.com.tw

Abstract

Let H be a graph. A decomposition of H is a set of edge-disjoint subgraphs of H whose union is H. A Hamiltonian path (respectively, cycle) of H is a path (respectively, cycle) that contains every vertex of H exactly once. A k-star, denoted by S_k, is a star with k edges. In this paper, we give necessary and sufficient conditions for decomposing the complete graph into α copies of Hamiltonian path (cycle) and β copies of S_3.

Keywords: decomposition, complete graph, Hamiltonian path, Hamiltonian cycle, star.

2010 Mathematics Subject Classification: 05C70, 05C38.

References

doi:10.1007/s00373-003-0530-3

[6] A. Abueida and C. Hampson, Multidecomposition of $K_n - F$ into graph-pairs of order 5 where F is a Hamilton cycle or an (almost) 1-factor, Ars Combin. 97 (2010) 399–416.

doi:10.1016/j.disc.2015.02.019

doi:10.11650/tjm.19.2015.4456

doi:10.1016/j.disc.2013.06.014

doi:10.11650/tjm.19.2015.3460

doi:10.1016/j.disc.2010.04.009

doi:10.1007/s00373-011-1105-3

doi:10.1016/0095-8956(81)90093-9

doi:10.1016/0012-365X(79)90034-7

Received 12 January 2018
Revised 14 May 2018
Accepted 14 May 2018