SUM-LIST COLOURING OF UNIONS OF A HYPERCYCLE AND A PATH WITH AT MOST TWO VERTICES IN COMMON

EWA DRGAS-BURCHARDT AND ELŻBIETA SIDOROWICZ

Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
Prof. Z. Szafrana 4a, 65–516 Zielona Góra, Poland
e-mail: e.drgas-burchardt@wmie.uz.zgora.pl
e.sidorowicz@wmie.uz.zgora.pl

Abstract

Given a hypergraph \mathcal{H} and a function $f : V(\mathcal{H}) \to \mathbb{N}$, we say that \mathcal{H} is f-choosable if there is a proper vertex colouring ϕ of \mathcal{H} such that $\phi(v) \in L(v)$ for all $v \in V(\mathcal{H})$, where $L : V(\mathcal{H}) \to 2^\mathbb{N}$ is any assignment of $f(v)$ colours to a vertex v. The sum choice number $\chi_{sc}(\mathcal{H})$ of \mathcal{H} is defined to be the minimum of $\sum_{v \in V(\mathcal{H})} f(v)$ over all functions f such that \mathcal{H} is f-choosable. For an arbitrary hypergraph \mathcal{H} the inequality $\chi_{sc}(\mathcal{H}) \leq |V(\mathcal{H})| + |E(\mathcal{H})|$ holds, and hypergraphs that attain this upper bound are called sc-greedy. In this paper we characterize sc-greedy hypergraphs that are unions of a hypercycle and a hyperpath having at most two vertices in common. Consequently, we characterize the hypergraphs of this type that are forbidden for the class of sc-greedy hypergraphs.

Keywords: hypergraphs, sum-list colouring, induced hereditary classes, forbidden hypergraphs.

2010 Mathematics Subject Classification: 05C15, 05C65.

References

doi:10.1007/978-3-662-53622-3

doi:10.2298/AADM161011026D

doi:10.37236/1669

doi:10.1007/s00373-004-0564-1

doi:10.7151/dmgt.2174

doi:10.1007/s00373-015-1565-y

Received 20 January 2020
Revised 25 February 2020
Accepted 25 February 2020