ORIENTED CHROMATIC NUMBER OF CARTESIAN PRODUCTS $P_M \Box P_N$ AND $C_M \Box P_N$

ANNA NENCA

Institute of Informatics
Faculty of Mathematics, Physics and Informatics
University of Gdańsk, 80–308 Gdańsk, Poland

E-mail: anenca@inf.ug.edu.pl

Abstract

We consider oriented chromatic number of Cartesian products of two paths $P_m \Box P_n$ and of Cartesian products of paths and cycles, $C_m \Box P_n$. We say that the oriented graph \overrightarrow{G} is colored by an oriented graph \overrightarrow{H} if there is a homomorphism from \overrightarrow{G} to \overrightarrow{H}. In this paper we show that there exists an oriented tournament \overrightarrow{H}_{10} with ten vertices which colors every orientation of $P_8 \Box P_n$ and every orientation of $C_m \Box P_n$, for $m = 3, 4, 5, 6, 7$ and $n \geq 1$. We also show that there exists an oriented graph \overrightarrow{T}_{16} with sixteen vertices which colors every orientation of $C_m \Box P_n$.

Keywords: graphs, oriented coloring, oriented chromatic number.

2010 Mathematics Subject Classification: 05C15.

1. Introduction

An oriented graph is a digraph \overrightarrow{G} obtained from an undirected graph G by assigning to each edge one of two possible directions. We say that \overrightarrow{G} is an orientation of G and G is the underlying graph of \overrightarrow{G}. A tournament \overrightarrow{T} is an orientation of a complete graph. If there is a homomorphism $\phi : V(\overrightarrow{G}) \to V(\overrightarrow{T})$, then we say that \overrightarrow{G} is colored by \overrightarrow{T} or that \overrightarrow{T} colors \overrightarrow{G}. We also say that \overrightarrow{T} is a coloring graph (tournament). The oriented chromatic number of the oriented graph \overrightarrow{G}, denoted by $\overrightarrow{\chi}(\overrightarrow{G})$, is the smallest integer k such that \overrightarrow{G} is colored by a tournament with k colors (vertices). The oriented chromatic number $\overrightarrow{\chi}(G)$ of an undirected graph G is the maximal chromatic number over all possible orientations of G. The oriented chromatic number of a family of
graphs is the maximal oriented chromatic number over all possible graphs of the family. The upper oriented chromatic number $\overrightarrow{\chi}^+(G)$ of an undirected graph G is the minimum order of an oriented graph \overrightarrow{H} such that every orientation \overrightarrow{G} of G admits a homomorphism to \overrightarrow{H}.

It is easy to see that for every undirected graph G, $\chi(G) \leq \overrightarrow{\chi}(G) \leq \overrightarrow{\chi}^+(G)$, see [19]. The Cartesian product $G \Box H$ of two undirected graphs G and H is the graph with the vertex set $V(G) \times V(H)$, where two vertices are adjacent if and only if they are equal in one coordinate and adjacent in the other. We use P_k to denote the path on k vertices. Sopena [19] considered upper oriented chromatic number of strong, Cartesian and direct products of graphs.

Theorem 1 [19]. If G and H are two undirected graphs, then $\overrightarrow{\chi}^+(G \Box H) \leq \overrightarrow{\chi}^+(G) \cdot \overrightarrow{\chi}^+(H) \cdot \min\{\chi(G), \chi(H)\}$.

Oriented coloring has been studied in recent years [1, 2, 6, 8–10, 12, 14, 16–20, 22], see [15] for a survey of the main results. Several authors established or bounded chromatic numbers for some families of graphs, such as oriented planar graphs [12,14], outerplanar graphs [12,17,18], graphs with bounded degree three [10,17,20], k-trees [17], Halin graphs [5,9], graphs with given excess [8] or grids [3,4,6,13,22].

In this paper we focus on the oriented chromatic number of Cartesian products of two paths, called 2-dimensional grids $G_{m,n} = P_m \Box P_n$, and Cartesian products of cycles and paths, called stacked prism graphs $Y_{m,n} = C_m \Box P_n$.

Theorem 2 [16,21]. Let G be an undirected graph. Then:

(a) If G is a forest with at least three vertices, then $\overrightarrow{\chi}^+(G) = 3$.

(b) $\overrightarrow{\chi}^+(C_5) = 5$. Moreover, every orientation of C_5 can be colored by \overrightarrow{H}_2 (see Figure 1(b)).

(c) For each $k \leq 3$, $k \neq 5$, we have $\overrightarrow{\chi}^+(C_k) = 4$. Moreover, every orientation of a cycle C_k with $k \leq 3$ and $k \neq 5$ can be colored by \overrightarrow{H}_1 (see Figure 1(a)).

Theorems 1 and 2 imply that $\overrightarrow{\chi}^+(P_m \Box P_n) \leq 3 \cdot 3 \cdot 2 = 18$. Furthermore, we know that

- $\overrightarrow{\chi}(P_m \Box P_n) \leq 11$, for every $m, n \geq 2$ [6],
- there exists an orientation of $P_4 \Box P_5$ which requires 7 colors for oriented coloring [6],
- there exists an orientation of $P_4 \Box P_5$ which requires 8 colors for oriented coloring [3],
- $\overrightarrow{\chi}(P_2 \Box P_2) = 4$, $\overrightarrow{\chi}(P_2 \Box P_3) = 5$ and $\overrightarrow{\chi}(P_2 \Box P_n) = 6$, for $n \geq 6$ [6],
- $\overrightarrow{\chi}(P_3 \Box P_n) = 6$, for every $3 \leq n \leq 6$, and $\overrightarrow{\chi}(P_3 \Box P_n) = 7$, for every $n \geq 7$ [6,22],
Oriented Chromatic Number of Cartesian Products $P_m \square P_n$ and ...

Since $\chi(P_5 \square P_n) \leq 3 \cdot 4 = 24$, for $m \neq 5$, $n \geq 3$.

2. Coloring Graphs

2.1. Paley tournament

Let p be a prime number such that $p \equiv 3 \mod 4$, and let $\mathbb{Z}_p = \{0, \ldots, p - 1\}$ be the ring of integers modulo p. We denote by $QR_p = \{r : r \neq 0, r = s^2, \text{for some} \ s \in \mathbb{Z}_p\}$ — the set of nonzero quadratic residues of \mathbb{Z}_p. All arithmetic operation in this section are made in the ring \mathbb{Z}_p.

Definition 3. The directed graph T_p with the set of vertices $V(T_p) = \mathbb{Z}_p$ and the set of arcs $A(T_p) = \{(x, y) : x, y \in V(T_p) \text{ and } y - x \in QR_p\}$ is called the *Paley tournament* of order p. Observe that T_p is a tournament.
Lemma 4. If \(a \in \text{QR}_p \) and \(b \in \mathbb{Z}_p \), then the mapping \(f : \overrightarrow{T}_p \to \overrightarrow{T}_p \) defined by \(f(x) = a \cdot x + b \) is an automorphism.

Lemma 5 [7]. The Paley tournament \(\overrightarrow{T}_p \) is arc-transitive; i.e., for any two pairs of arcs \((u, v), (x, y) \in A(\overrightarrow{T}_p)\), there exists an automorphism \(h \) such that \(h(u) = x \) and \(h(v) = y \).

Lemma 6. The Paley tournament \(\overrightarrow{T}_p \) is self-converse; i.e., \(\overrightarrow{T}_p \) and its converse \(\overrightarrow{T}_p^R \) are isomorphic.

Proof. Consider the function \(f : \overrightarrow{T}_p^R \to \overrightarrow{T}_p \) defined by \(f(x) = -x \). Then \((x, y) \in A(\overrightarrow{T}_p^R)\) if and only if \((-x, -y) \in A(\overrightarrow{T}_p)\).

2.2. Coloring graph \(\overrightarrow{H}_{10} \)

Consider the coloring graph \(\overrightarrow{H}_{10} \) obtained from the Paley tournament \(\overrightarrow{T}_{11} \) by removing the vertex 0, i.e., \(V(\overrightarrow{H}_{10}) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \) and \((u, v) \in A(\overrightarrow{H}_{10})\) if \((v - u) \in \{1, 3, 4, 5, 9\}\), see Figure 2.

![Figure 2. Coloring graph \(\overrightarrow{H}_{10} \).](image-url)
Lemma 7. (a) For every $a \in \{1, 3, 4, 5, 9\}$, the function $h_a(x) = ax \pmod{11}$ is an automorphism of \overrightarrow{H}_{10}.
(b) For every $x \in \{1, 3, 4, 5, 9\}$ there is an automorphism h_a such that $h_a(x) = 1$.
(c) For every $x \in \{2, 6, 7, 8, 10\}$ there is an automorphism h_a such that $h_a(x) = 10$.

Lemma 8. Let \overrightarrow{G} be an orientation of a grid and let v be one of its vertex. Then the following two statements are equivalent.
(a) There exists an oriented coloring (homomorphism) $c : \overrightarrow{G} \rightarrow \overrightarrow{H}_{10}$.
(b) There exists an oriented coloring (homomorphism) $c' : \overrightarrow{G} \rightarrow \overrightarrow{H}_{10}$ such that $c'(v) \in \{1, 10\}$.

2.3. Tromp graph

Definition 9. Let \overrightarrow{G} be an oriented graph. We build the Tromp graph $\overrightarrow{T}(\overrightarrow{G})$ in the following way.
- Let $\overrightarrow{G'}$ be an isomorphic copy of \overrightarrow{G}.
- ∞, ∞' be two additional vertices.
- Let $t : V(\overrightarrow{G}) \cup \{\infty\} \rightarrow V(\overrightarrow{G'}) \cup \{\infty'\}$ be an isomorphism with $t(\infty) = \infty'$. For every $u \in V(\overrightarrow{G}) \cup \{\infty\}$ by u' we denote $t(u)$ and for every $u \in V(\overrightarrow{G'}) \cup \{\infty'\}$ by u' we denote $t^{-1}(u)$. The pair (u, u') is called a pair of twin vertices.
- The set of vertices $V(\overrightarrow{T}(\overrightarrow{G})) = V(\overrightarrow{G}) \cup V(\overrightarrow{G'}) \cup \{\infty, \infty'\}$.
- The set of arcs is defined by
 $$\forall_{u \in V(\overrightarrow{G})}(\infty, u), (\infty, u'), (u', \infty'), (\infty', u) \in A(\overrightarrow{T}(\overrightarrow{G})), \forall_{u, v \in V(\overrightarrow{G}), (u, v) \in A(\overrightarrow{G})}(u, v), (u', v'), (v, u'), (v', u) \in A(\overrightarrow{T}(\overrightarrow{G})).$$

Let $\overrightarrow{T}_{16} = \overrightarrow{T}(\overrightarrow{T}_7)$ be the Tromp graph on sixteen vertices obtained from the Paley tournament \overrightarrow{T}_7, see Figure 3.

Suppose that i and j are integers such that $i \geq 1$ and $j \geq 1$. Consider the star $K_{1,i}$ with the set of vertices $V(K_{1,i}) = \{x, v_1, v_2, \ldots, v_l\}$ and edges of the form $\{x, v_k\}$ for $1 \leq k \leq i$; and a Tromp graph $\overrightarrow{T}(\overrightarrow{G})$. Let \overrightarrow{K} be an orientation of the star $K_{1,i}$ and $c : \overrightarrow{K} \rightarrow \overrightarrow{T}(\overrightarrow{G})$ be a homomorphism. We say that the sequence of colors $(c(v_1), c(v_2), \ldots, c(v_l))$ chosen for leaves of the star is compatible with orientation \overrightarrow{K} if for every pair of vertices v_k, v_l it holds:
- $c(v_k) \neq c(v_l)$ if (v_k, x) and $(x, v_l) \in \overrightarrow{K}$ or if (v_l, x) and $(x, v_k) \in \overrightarrow{K}$, and
- $c(v_k) \neq c(v_l)'$ if (v_k, x) and $(v_l, x) \in \overrightarrow{K}$ or if (x, v_l) and $(x, v_k) \in \overrightarrow{K}$.

Figure 3. Coloring graph \(\overrightarrow{T}_{16} = \overrightarrow{T}_r(\overrightarrow{T}_7) \).

Definition 10. We say that the Tromp graph \(\overrightarrow{T} \) has the property \(P_{c}(i, j) \) if \(|V(\overrightarrow{T})| \geq i \) and for every orientation \(\overrightarrow{K} \) of the star \(K_{1, i} \) and every sequence of colors \((c(v_1), c(v_2), \ldots, c(v_k)) \) chosen for leaves compatible with \(\overrightarrow{K} \) we can choose \(j \) different ways to color \(x \), the central vertex of the star.

Lemma 11 [11]. The Tromp graph \(\overrightarrow{T}_{16} \) has the properties \(P_{c}(1, 7) \), \(P_{c}(2, 3) \) and \(P_{c}(3, 1) \).

3. **Grids** \(G_{8,n} = P_8 \Box P_n \)

Definition 12. The comb \(R_8 \) is an undirected graph with the set of vertices \(V(R_8) = \{(1,1), \ldots, (8,1), (1,2), \ldots, (8,2)\} \) and edges of the form \(\{(i,1), (i,2)\} \) for \(1 \leq i \leq 8 \), or \(\{(i,2), (i+1,2)\} \) for \(1 \leq i < 8 \); see Figure 4. The vertices \((1,1), \ldots, (8,1) \) form the first column of the comb \(R_8 \), while \((1,2), \ldots, (8,2) \) form the second column.

Definition 13. A set \(S \subseteq (V(\overrightarrow{H}_{10}))^8 \) is closed under extension if
Oriented Chromatic Number of Cartesian Products $P_m \square P_n$ and ...

(a) for every orientation \vec{P} of the path $P_8 = (v_1, \ldots, v_8)$, there exists a coloring $c : \vec{P} \to \vec{H}_{10}$ such that $(c(v_1), \ldots, c(v_8)) \in S$.

(b) for every orientation \vec{R} of the comb R_8 and for every sequence $(c_1, \ldots, c_8) \in S$, there exists a coloring $c : \vec{R} \to \vec{H}_{10}$ and an automorphism h_a of \vec{H}_{10} such that

1. $(c(1,1), \ldots, c(8,1)) = (c_1, \ldots, c_8)$, and
2. $h_a(c(1,2), \ldots, c(8,2)) \in S$.

Lemma 14. There exists a set $S \subseteq (V(\vec{H}_{10}))^8$ which is closed under extension.

Proof. In order to prove the lemma we use a computer. We have designed an algorithm that finds a proper set S. Let

$S_{\text{max}}(P_8) = \{(c_1, \ldots, c_8) : c_1 \in \{1, 10\}, \text{ and } \forall_{2 \leq i \leq 8} c_i \in V(\vec{H}_{10}), \text{ and } c_{i-1} \neq c_i \}.$

Note, that for every sequence $t = (t_1, \ldots, t_8) \in S_{\text{max}}(P_8)$, there exists an orientation \vec{P} of the path $P_8 = (v_1, \ldots, v_8)$ and a coloring $c : \vec{P} \to \vec{H}_{10}$ such that $(c(v_1), \ldots, c(v_8)) = t$. For a set T, a sequence $t = (t_1, \ldots, t_8) \in T$, and an orientation \vec{R} of the comb R_8, we say that t can be extended in T on \vec{R} if there exists a coloring $c : \vec{R} \to \vec{H}_{10}$ and a homomorphism h_a such that

- $(c(1,1), \ldots, c(8,1)) = t$, and
- $h_a(c(1,2), \ldots, c(8,2)) \in S$.

The algorithm starts with $T = S_{\text{max}}(P_8)$. In the while loop, for each sequence $t \in T$ and for each orientation \vec{R} of the comb R_8, the algorithm checks if t can be extended in T on \vec{R}. If the sequence t can not be extended, then t is removed from T. After the while loop, the set T satisfies the condition (b) of Definition 13. It is easy to see that if T is not empty, then it also satisfies the condition (a). In this case $S = T$ is returned. If T is empty, then the algorithm returns NO.
Algorithm ComputeSet S

OUTPUT: a set $S \subset (V(\overrightarrow{H}_{10}))^8$ closed under extension or NO if such a set does not exist.

1. compute the set $S_{\text{max}}(P_8)$
2. $T := S_{\text{max}}(P_8)$
3. SetIsReady := false
4. while not SetIsReady
5. SetIsReady := true
6. for every sequence $t = (t_1, \ldots, t_8) \in T$
7. color the first column of the comb R_8
8. by setting $c(i, 1) = t_i$, for $1 \leq i \leq 8$
9. SeqCanBeExtended := true
10. for every orientation \overrightarrow{R} of the comb R_8
11. if t cannot be extended on \overrightarrow{R}
12. SeqCanBeExtended := false
13. if not SeqCanBeExtended
14. $T := T - t$
15. SetIsReady := false
16. if $T = \emptyset$
17. return NO
18. else
19. $S := T$
20. return the set S

Using Algorithm ComputeSet S we have found a nonempty set S closed under extension. The set S is posted on the website https://inf.ug.edu.pl/grids/.

Theorem 15. Every orientation of every grid with eight rows can be colored by the coloring graph \overrightarrow{H}_{10}.

Proof. For a given orientation \overrightarrow{G} of $G(8, n)$ and $i \leq n$, by $\overrightarrow{G}(i)$ we denote the induced subgraph of \overrightarrow{G} formed by the first i columns of \overrightarrow{G}. It is easy to show by induction that, for every i, there is a coloring $c : \overrightarrow{G}(i) \rightarrow \overrightarrow{H}_{10}$ such that $c(\text{i}th \text{ column}) \in S$.

4. Stacked Prism Graphs $Y_{m,n} = C_m \square P_n$

Theorem 16. Every orientation of $C_m \square P_n$ with $m \geq 3$ and $n \geq 1$ can be colored by the Tromp graph \overrightarrow{T}_{16}.
Oriented Chromatic Number of Cartesian Products $P_m \Box P_n$ and ...

Figure 5. Stacked prism graph $Y_{m,n}$.

Proof. Let \vec{Y} be any orientation of stacked prism graph $Y_{m,n} = C_m \Box P_n$. We identify each vertex $u \in \vec{Y}$ with the pair of its coordinates (i, j), $1 \leq i \leq m$, $1 \leq j \leq n$. We shall show that \vec{Y} can be colored by \vec{T}_{16}. We color the vertices of \vec{Y} row by row. For the first row, clearly, it is always possible to color any oriented cycle by homomorphism to \vec{T}_{16}, because \vec{T}_{16} has the properties $P_c(2,3)$ and $P_c(1,7)$. Now, suppose that $i > 1$ and the rows from 1 to $i - 1$ are already colored. To color the vertex $(1, i)$ we choose a color which is compatible

- with the color of vertex $(2, i - 1)$ in the star $\{(2, i), (1, i), (2, i - 1)\}$,
- with the color of vertex $(m, i - 1)$ in the star $\{(m, i), (1, i), (m, i - 1)\}$,

which is always possible using the property $P_c(1,7)$. Using the property $P_c(2,3)$ it is always possible to color vertex $(2, i)$ by the color compatible with color of the vertex $(3, i - 1)$ in the star $\{(3, i), (2, i), (3, i - 1)\}$. Then we continue this method to color vertices $(3, i), \ldots, (m - 2, i)$. To color the vertex $(m - 1, i)$ we choose a color which is compatible with the colors of vertices $(m, i - 1)$ and $(1, i)$ in the star $\{(m, i), (1, i), (m, i - 1), (m - 1, i)\}$. This is possible, because the colors of vertices $(1, i)$ and $(m, i - 1)$ are compatible in the star $\{(m, i), (1, i), (m, i - 1)\}$.

Finally we color the vertex (m, i) using the property $P_c(3,1)$. Similarly we can color the following rows.

Theorem 17. Every orientation of stacked prism graph $Y_{m,n} = C_m \Box P_n$ with $3 \leq m \leq 7$ can be colored by the coloring graph \vec{H}_{10}.

Proof. The proof of the theorem is similar to the proof of Theorem 15 and follows from Lemma 20.

Definition 18. For \(m \geq 3 \), the \(m \)-sunlet graph \(\text{Sun}_m \) is an undirected graph with the set of vertices \(V(\text{Sun}_m) = \{(1,1),\ldots,(m,1),(1,2),\ldots,(m,2)\} \) and edges of the form \(\{(i,1),(i,2)\} \) for \(1 \leq i \leq m \), or \(\{(i,2),(i+1,2)\} \) for \(1 \leq i < m \), or \(\{(m,2),(1,2)\} \); see Figure 6.

![Figure 6. m-sunlet graph.](image)

Definition 19. A set \(S \subseteq (V(\vec{H}_{10}))^m \) is cycle-closed under extension if

(a) for every orientation \(\vec{C} \) of the cycle \(C_m = (v_1,\ldots,v_m) \), there exists a coloring \(c : \vec{C} \to \vec{H}_{10} \) such that \((c(v_1),\ldots,c(v_m)) \in S \),

(b) for every orientation \(\vec{\text{Sun}} \) of the \(m \)-sunlet graph \(\text{Sun}_m \) and for every sequence \((c_1,\ldots,c_m) \in S \), there exists a coloring \(c : \vec{\text{Sun}} \to \vec{H}_{10} \) and an automorphism \(h_a \) of \(\vec{H}_{10} \) such that

1. \((c(1,1),\ldots,c(m,1)) = (c_1,\ldots,c_m) \), and
2. \(h_a(c(1,2),\ldots,c(m,2)) \in S \).

Lemma 20. For each \(m = 3,4,5,6,7 \), there exists a nonempty set \(S_m \subseteq (V(\vec{H}_{10}))^m \), which is cycle-closed under extension.

Proof. In order to proof the lemma we use a computer. We have designed an algorithm, similar to the Algorithm ComputeSetS, that finds a set cycle-closed under extension. The algorithm, for a given \(m \), uses the \(m \)-sunlet \(\text{Sun}_m \) instead of a comb \(R_8 \). Using the algorithm we have found that for each \(m = 3,\ldots,7 \), there exists a nonempty set cycle-closed under extension.
Oriented Chromatic Number of Cartesian Products $P_m \square P_n$ and …

Acknowledgements

The author would like to thank the anonymous reviewer for pointing out that the Tromp graph \overrightarrow{T}_{16} can be used to color every orientation of every stacked prism graphs.

References

Received 5 June 2019
Revised 31 January 2020
Accepted 3 February 2020