ON THE α-SPECTRAL RADIUS OF UNIFORM HYPERGRAPHS

HAIYAN GUO AND BO ZHOU1

School of Mathematical Sciences
South China Normal University
Guangzhou 510631, P.R. China

e-mail: ghaiyan0705@163.com
zhoub@scnu.edu.cn

Abstract

For $0 \leq \alpha < 1$ and a uniform hypergraph G, the α-spectral radius of G is the largest H-eigenvalue of $\alpha D(G) + (1-\alpha)A(G)$, where $D(G)$ and $A(G)$ are the diagonal tensor of degrees and the adjacency tensor of G, respectively. We give upper bounds for the α-spectral radius of a uniform hypergraph, propose some transformations that increase the α-spectral radius, and determine the unique hypergraphs with maximum α-spectral radius in some classes of uniform hypergraphs.

Keywords: α-spectral radius, α-Perron vector, adjacency tensor, uniform hypergraph, extremal hypergraph.

2010 Mathematics Subject Classification: 05C50, 05C65.

1. Introduction

Let G be a hypergraph on n vertices with vertex set $V(G)$ and edge set $E(G)$. If $|e| = k$ for each $e \in E(G)$, then G is said to be a k-uniform hypergraph. For a vertex $v \in V(G)$, the set of the edges containing v in G is denoted by $E_G(v)$, and the degree of v in G, denoted by $d_G(v)$ or d_v, is the size of $E_G(v)$. We say that G is regular if all vertices of G have equal degrees. Otherwise, G is irregular.

For $u, v \in V(G)$, a walk from u to v in G is defined to be an alternating sequence of vertices and edges $(v_0, e_1, v_1, \ldots, v_{s-1}, e_s, v_s)$ with $v_0 = u$ and $v_s = v$ such that edge e_i contains vertices v_{i-1} and v_i, and $v_{i-1} \neq v_i$ for $i = 1, \ldots, s$. The value s is the length of this walk. A path is a walk with all v_i distinct and all e_i

1Corresponding author.
distinct. A cycle is a walk containing at least two edges, all \(e_i \) are distinct and all \(v_i \) are distinct except \(v_0 = v_k \). If there is a path from \(u \) to \(v \) for any \(u, v \in V(G) \), then we say that \(G \) is connected. A hypertree is a connected hypergraph with no cycles. For \(k \geq 2 \), the number of vertices of a \(k \)-uniform hypertree with \(m \) edges is \(1 + (k - 1)m \).

The distance between vertices \(u \) and \(v \) in a connected hypergraph \(G \) is the length of a shortest path from \(u \) to \(v \) in \(G \). The diameter of connected hypergraph \(G \) is the maximum distance between any two vertices of \(G \).

For positive integers \(k \) and \(n \), a tensor \(T = (T_{i_1 \cdots i_k}) \) of order \(k \) and dimension \(n \) is a multidimensional array with entries \(T_{i_1 \cdots i_k} \in \mathbb{C} \) for \(i_j \in [n] = \{1, \ldots, n\} \) and \(j \in [k] \), where \(\mathbb{C} \) is the complex field.

Let \(M \) be a tensor of order \(k \geq 2 \) and dimension \(n \), and \(N \) a tensor of order \(\ell \geq 1 \) and dimension \(n \). The product \(MN \) is the tensor of order \((k - 1)(\ell - 1) + 1 \) and dimension \(n \) with entries [22]

\[
(MN)_{i_1 \cdots j_{k-1}} = \sum_{i_2, \ldots, i_k \in [n]} M_{ii_2 \cdots i_k} N_{i_2 j_1} \cdots N_{i_k j_{k-1}},
\]

with \(i \in [n] \) and \(j_1, \ldots, j_{k-1} \in [n]^{\ell-1} \). Then for a tensor \(T \) of order \(k \) and dimension \(n \) and an \(n \)-dimensional vector \(x = (x_1, \ldots, x_n)^\top \), \(Tx \) is an \(n \)-dimensional vector whose \(i \)-th entry is

\[
(Tx)_i = \sum_{i_2, \ldots, i_k = 1}^n T_{i_2 \cdots i_k} x_{i_2} \cdots x_{i_k},
\]

where \(i \in [n] \). For some complex \(\lambda \), if there is a nonzero vector \(x \) such that

\[
Tx = \lambda \left(x_1^{k-1}, \ldots, x_n^{k-1}\right)^\top,
\]

then \(\lambda \) is called an eigenvalue of \(T \), and \(x \) is called an eigenvector of \(T \) corresponding to \(\lambda \). Moreover, if both \(\lambda \) and \(x \) are real, then we call \(\lambda \) an \(H \)-eigenvalue and \(x \) an \(H \)-eigenvector of \(T \). See [10, 18, 20] for more details. The spectral radius of \(T \) is the largest modulus of its eigenvalues, denoted by \(\rho(T) \).

Let \(G \) be a \(k \)-uniform hypergraph with vertex set \(V(G) = \{v_1, \ldots, v_n\} \), where \(k \geq 2 \). The adjacency tensor of \(G \) is defined in [1] as the tensor \(A(G) \) of order \(k \) and dimension \(n \) whose \((i_1, \ldots, i_k)\)-entry is \(\frac{1}{(k-1)!} \) if \(\{v_{i_1}, \ldots, v_{i_k}\} \in E(G) \), and 0 otherwise. The degree tensor of \(G \) is the diagonal tensor \(D(G) \) of order \(k \) and dimension \(n \) with \((i, \ldots, i)\)-entry to be the degree of vertex \(v_i \in [n] \). Then \(Q(G) = D(G) + A(G) \) is the signless Laplacian tensor of \(G \) [20]. Motivated by work of Nikiforov [14] (see also [5, 15]), Lin et al. [11] proposed to study the convex linear combinations \(A_\alpha(G) \) of \(D(G) \) and \(A(G) \) defined by

\[
A_\alpha(G) = \alpha D(G) + (1 - \alpha) A(G),
\]
where $0 \leq \alpha < 1$. The α-spectral radius of G is the spectral radius of $A_\alpha(G)$, denoted by $\rho_\alpha(G)$. Note that $\rho_0(G)$ is the spectral radius of G, while $2\rho_{1/2}(G)$ is the signless Laplacian spectral radius of G.

For $k \geq 2$, let G be a k-uniform hypergraph with $V(G) = [n]$, and x a n-dimensional column vector. Let $x_V = \prod_{v \in V} x_v$ for $V \subseteq V(G)$. Then
\[
x^\top (A_\alpha(G)x) = \alpha \sum_{u \in V(G)} d_u x_u^k + (1 - \alpha)k \sum_{e \in E(G)} x_e,
\]
or equivalently,
\[
x^\top (A_\alpha(G)x) = \sum_{e \in E(G)} \left(\alpha \sum_{u \in e} x_u^k + (1 - \alpha)k x_e \right).
\]

For a uniform hypergraph G, bounds for the spectral radius $\rho_0(G)$ have been given in [1, 12, 13, 29], and bounds for the signless Laplacian spectral radius $2\rho_{1/2}(G)$ may be found in [6, 12, 21]. Recently, Lin et al. [11] gave upper bounds for α-spectral radius of connected irregular k-uniform hypergraphs, extending some known bounds for ordinary graphs. Some hypergraph transformations have been proposed to investigate the change of the 0-spectral radius, and the unique hypergraphs that maximize or minimize the 0-spectral radius have been determined among some classes of uniform hypergraphs (especially for hypertrees), see, e.g., [2, 4, 8, 16, 24, 25, 28, 31].

In this paper, we give upper bounds for the α-spectral radius of a uniform hypergraph, propose some hypergraph transformations that increase the α-spectral radius, and determine the unique hypergraphs with maximum α-spectral radius in some classes of uniform hypergraphs such as the class of k-uniform hypercacti with m edges and r cycles for $0 \leq r \leq \lfloor \frac{m}{2} \rfloor$, and the class of k-uniform hypertrees with m edges and diameter $d \geq 3$.

2. Preliminaries

A tensor T of order $k \geq 2$ and dimension n is said to be weakly reducible, if there is a nonempty proper subset J of $[n]$ such that for $i_1 \in J$ and $i_j \in [n] \setminus J$ for some $j = 2, \ldots, k$, $T_{i_1 \cdots i_k} = 0$. Otherwise, T is weakly irreducible.

For $k \geq 2$, an n-dimensional vector x is said to be k-unit if $\sum_{i=1}^n x_i^k = 1$.

Lemma 1 [3, 27]. Let T be a nonnegative tensor of order $k \geq 2$ and dimension n. Then $\rho(T)$ is an eigenvalue of T and there is a k-unit nonnegative eigenvector corresponding to $\rho(T)$. If furthermore T is weakly irreducible, then there is a unique k-unit positive eigenvector corresponding to $\rho(T)$.
If G is a k-uniform hypergraph with $k \geq 2$, then $\mathcal{A}_\alpha(G)$ is weakly irreducible if and only if G is connected (see [17, 20] for the treatment of $\mathcal{A}_0(G)$ and $2A_{1/2}(G)$, respectively). Thus, if G is connected, then by Lemma 1, there is a unique k-unit positive H-eigenvector x corresponding to $\rho_\alpha(G)$, which is called the α-Perron vector of G.

For a nonnegative tensor T of order $k \geq 2$ and dimension n, let $r_i(T) = \sum_{i_2 \cdots i_k=1}^n T_{i_2 \cdots i_k}$ for $i = 1, \ldots, n$.

Lemma 2 [7, 27]. Let T be a nonnegative tensor of order $k \geq 2$ and dimension n. Then

$$\rho(T) \leq \max_{1 \leq i \leq n} r_i(T)$$

with equality when T is weakly irreducible if and only if $r_1(T) = \cdots = r_n(T)$.

For two tensors \mathcal{M} and \mathcal{N} of order $k \geq 2$ and dimension n, if there is an $n \times n$ nonsingular diagonal matrix U such that $\mathcal{N} = U^{-(k-1)} \mathcal{M} U$, then we say that \mathcal{M} and \mathcal{N} are diagonal similar.

Lemma 3 [22]. Let \mathcal{M} and \mathcal{N} be two diagonal similar tensors of order $k \geq 2$ and dimension n. Then \mathcal{M} and \mathcal{N} have the same real eigenvalues.

Let G be a connected k-uniform hypergraph on n vertices, where $k \geq 2$. Let $0 \leq \alpha < 1$. For an n-dimensional k-unit nonnegative vector x, by [19, Theorem 2] (and its proof) and Lemma 1, we have $\rho_\alpha(G) \geq x^\top (\mathcal{A}_\alpha(G)x)$ with equality if and only if x is the α-Perron vector of G. If x is the α-Perron vector of G, then for any $v \in V(G)$,

$$\rho_\alpha(G)x_v^{k-1} = \alpha d_v x_v^{k-1} + (1 - \alpha) \sum_{e \in E_v(G)} x_{e \setminus \{v\}},$$

which is called the eigenequation of G at v.

For a hypergraph G with $\emptyset \neq X \subseteq V(G)$, let $G[X]$ be the subhypergraph induced by X, i.e., $G[X]$ has vertex set X and edge set $\{e \subseteq X : e \in E(G)\}$. If $E' \subseteq E(G)$, then $G - E'$ is the hypergraph obtained from G by deleting the edges in E'. If $E' \subseteq E(G)$, then $G \cup E'$ is the hypergraph obtained from G by adding elements of E' as edges.

A k-uniform hypertree with m edges is a hyperstar, denoted by $S_{m,k}$, if all edges share a common vertex. A k-uniform loose path with $m \geq 1$ edges, denoted by $P_{m,k}$, is the k-uniform hypertree whose vertices and edges may be labelled as $(v_0, e_1, v_1, \ldots, v_{m-1}, e_m, v_m)$ such that the vertices v_1, \ldots, v_{m-1} are of degree 2, and all the other vertices of G are of degree 1.

If P is a path or a cycle of a hypergraph G, $V(P)$ denotes the vertex set of the hypergraph P.

H. GUO AND B. ZHOU
3. Upper Bounds for α-Spectral Radius

For a connected irregular k-uniform hypergraph G with n vertices, maximum degree Δ and diameter D, where $2 \leq k < n$, it was shown in [11] that for $0 \leq \alpha < 1$,

$$\rho_\alpha(G) < \Delta - \frac{4(1-\alpha)}{((4D-1-2\alpha)(k-1)+1)n}.$$

For a k-uniform hypergraph G, upper bounds on $\rho_0(G)$ and $2\rho_{1/2}(G)$ have been given in [12, 29].

Theorem 4. Let G be a k-uniform hypergraph on n vertices with maximum degree Δ and second maximum degree Δ', where $k \geq 2$. For $\alpha = 0$, let $\delta = (\frac{\Delta}{\Delta'})^\frac{1}{k}$, and for $0 < \alpha < 1$, let $\delta = 1$ if $\Delta = \Delta'$ and δ be a root of $h(t) = 0$ in $(\frac{\Delta}{\Delta'})^{\frac{1}{k}}, +\infty)$ if $\Delta > \Delta'$, where $h(t) = (1-\alpha)\Delta' t + \alpha(\Delta' - \Delta)t^{k-1} - (1-\alpha)\Delta$ for $0 \leq \alpha < 1$. Then

$$(1) \quad \rho_\alpha(G) \leq \alpha \Delta + (1-\alpha)\Delta \delta^{-(k-1)}.$$

Moreover, if G is connected, then equality holds in (1) if and only if G is a regular hypergraph or $G \cong G'$, where $V(G') = V(H) \cup \{v\}$, $E(G') = \{e \cup \{v\}: e \in E(H)\}$, and H is a regular $(k-1)$-uniform hypergraph on $n-1$ vertices with $v \notin V(H)$.

Proof. By Theorem 2.1 and Lemma 2.2 in [22], we may assume that $d_1 \geq \cdots \geq d_n$. Then $\Delta = d_1$ and $\Delta' = d_2$.

If $d_1 = d_2$, then $\delta = 1$, and by Lemma 2, we have

$$\rho_\alpha(G) \leq \max_{1 \leq i \leq n} r_i(A_\alpha(G)) = \max_{1 \leq i \leq n} d_i = d_1 = \alpha d_1 + (1-\alpha) d_2 \delta^{-(k-1)},$$

and when G is connected, $A_\alpha(G)$ is weakly irreducible, thus by Lemma 2, equality (1) holds if and only if $r_1(A_\alpha(G)) = \cdots = r_n(A_\alpha(G))$, i.e., G is a regular hypergraph.

Suppose in the following that $d_1 > d_2$. Let $U = \text{diag}(t, 1, \ldots, 1)$ be an $n \times n$ diagonal matrix, where $t > 1$ is a variable to be determined later. Let $T = U^{-(k-1)}A_\alpha(G)U$. By Lemma 3, $A_\alpha(G)$ and T have the same real eigenvalues. Obviously, both $A_\alpha(G)$ and T are nonnegative tensors of order k and dimension n. By Lemma 1, $\rho(A_\alpha(G))$ is an eigenvalue of $A_\alpha(G)$ and $\rho(T)$ is an eigenvalue of T. Therefore $\rho_\alpha(G) = \rho(A_\alpha(G)) = \rho(T)$. For $i \in [n] \setminus \{1\}$, let $d_{1,i} = |\{e : 1, i \in e \in E(G)\}|$. Obviously, $d_{1,i} \leq d_i$. Note that
\[r_1(T) = \sum_{i_2, \ldots, i_k \in [n]} T_{i_2 \cdots i_k} \]
\[= \alpha \mathcal{D}_{1 \cdots 1} + (1 - \alpha) \sum_{i_2, \ldots, i_k \in [n]} U_{i_1}^{-1} \mathcal{A}_{i_1 i_2 \cdots i_k} U_{i_2 i_3} \cdots U_{i_k i_k} \]
\[= \alpha d_1 + (1 - \alpha) \sum_{i_2, \ldots, i_k \in [n]} \frac{1}{t_{k-1}} \mathcal{A}_{i_1 i_2 \cdots i_k} = \alpha d_1 + \frac{(1 - \alpha)d_1}{t_{k-1}}, \]
and for \(2 \leq i \leq n, \)
\[r_i(T) = \sum_{i_2, \ldots, i_k \in [n]} T_{i_2 \cdots i_k} = \alpha \mathcal{D}_{i \cdots i} + (1 - \alpha) \sum_{i_2, \ldots, i_k \in [n]} U_{ii}^{-1} \mathcal{A}_{ii i_2 \cdots i_k} U_{i_2 i_3} \cdots U_{i_k i_k} \]
\[= \alpha d_i + (1 - \alpha) \sum_{i_2, \ldots, i_k \in [n]} U_{ii}^{-1} \mathcal{A}_{ii i_2 \cdots i_k} U_{i_2 i_3} \cdots U_{i_k i_k} \]
\[+ (1 - \alpha) \sum_{i_2, \ldots, i_k \in [n]} U_{ii}^{-1} \mathcal{A}_{ii i_2 \cdots i_k} U_{i_2 i_3} \cdots U_{i_k i_k} \]
\[= \alpha d_i + (1 - \alpha) \sum_{i_2, \ldots, i_k \in [n]} \mathcal{A}_{ii i_2 \cdots i_k} t + (1 - \alpha) \sum_{i_2, \ldots, i_k \in [n]} \mathcal{A}_{ii i_2 \cdots i_k} \]
\[= \alpha d_i + (1 - \alpha)(t - 1)d_{1,i} + (1 - \alpha)(d_i - d_{1,i}) \]
\[= d_i + (1 - \alpha)(t - 1)d_{1,i} \leq (1 + (1 - \alpha)(t - 1))d_i \leq (1 + (1 - \alpha)(t - 1))d_2 \]
with equality if and only if \(d_{1,i} = d_i = d_2. \)

Note that \(h \left(\left(\frac{d_i}{d_2} \right)^\frac{1}{\delta} \right) = \alpha (d_2 - d_1) \left(\frac{d_i}{d_2} \right)^\frac{k-1}{\delta} \leq 0 \) with equality if and only if \(\alpha = 0, \) and that \(h(+\infty) > 0. \) Thus \(h(t) = 0 \) does have a root \(\delta, \) as required. Let \(t = \delta. \) Then \(t > 1, \)
\[\alpha d_1 + \frac{(1 - \alpha)d_1}{t_{k-1}} = (1 + (1 - \alpha)(t - 1))d_2, \]
and thus for \(1 \leq i \leq n, \)
\[r_i(T) \leq \alpha d_1 + (1 - \alpha)d_1 \delta^{-(k-1)}. \]

Now by Lemma 2,
\[\rho_\alpha(G) = \rho(T) \leq \max_{1 \leq i \leq n} r_i(T) \leq \alpha d_1 + (1 - \alpha)d_1 \delta^{-(k-1)}. \]

This proves (1).
Suppose that G is connected. Then A_α is weakly irreducible, and so is T.

Suppose that equality holds in (1). From the above arguments and by Lemma 2, we have $r_1(T) = \cdots = r_n(T) = \alpha d_1 + (1 - \alpha) d_1 \delta^{-(k-1)}$, and $d_{1,i} = d_i = d_2$ for $i = 2, \ldots, n$. Then vertex 1 is contained in each edge of G. Let H be the hypergraph with $V(H) = V(G) \setminus \{1\} = \{2, \ldots, n\}$ and $E(H) = \{e \setminus \{1\} : e \in E(G)\}$. Then H is a regular $(k-1)$-uniform hypergraph on vertices $2, \ldots, n$, of degree d_2.

Therefore $G \cong G'$, where $V(G') = V(H) \cup \{1\}$, $E(G') = \{e \cup \{1\} : e \in E(H)\}$, and H is a regular $(k-1)$-uniform hypergraph on vertices $2, \ldots, n$ of degree d_2.

Conversely, if $G \cong G'$, where $V(G') = V(H) \cup \{1\}$, $E(G') = \{e \cup \{1\} : e \in E(H)\}$, and H is a regular $(k-1)$-uniform hypergraph on vertices $2, \ldots, n$ of degree d_2, then by the above arguments, we have $r_i(T) = \alpha d_1 + (1 - \alpha) d_1 \delta^{-(k-1)}$ for $1 \leq i \leq n$, and thus by Lemma 3, $\rho(A_\alpha(G)) = \rho(T) = \alpha d_1 + (1 - \alpha) d_1 \delta^{-(k-1)}$, i.e., (1) is an equality.

As $\delta \geq \left(\frac{d_2}{d_1} \right)^{\frac{1}{k}}$ with equality if and only if $d_1 = d_2$, we have by Theorem 4 that $\rho_\alpha(G) \leq \alpha d_1 + (1 - \alpha) d_1^{\frac{1}{k}} d_2^{1 - \frac{1}{k}}$ with equality if and only if G is regular.

Letting $\alpha = 0$ in Theorem 4, we have $\delta = \left(\frac{d_2}{d_1} \right)^{\frac{1}{k}}$ and thus (1) becomes $\rho_0(G) \leq d_1^{\frac{1}{k}} d_2^{1 - \frac{1}{k}}$, see [29]. Letting $\alpha = \frac{1}{2}$ in Theorem 4, δ is the root of $d_2 t^k + (d_2 - d_1) t^{k-1} - d_1 = 0$, and (1) becomes $2 \rho_{1/2}(G) \leq d_1 + d_1 \delta^{-(k-1)}$, see [12].

Let G be a connected k-uniform hypergraph with n vertices, m edges, maximum degree Δ and diameter D, where $k \geq 2$. For $0 \leq \alpha < 1$, let $\bar{\pi}$ be the maximum entry of the α-Perron vector of G. From [11], we have

$$\rho_\alpha(G) \leq \Delta - \frac{(1 - \alpha) k(n\Delta - km)}{2(n\Delta - km)(k-1)D + (1 - \alpha) k} \bar{\pi}^k,$$

and if $D = 1$ and $k \geq 3$, then

$$\rho_\alpha(G) \leq \Delta - \frac{(1 - \alpha) (n\Delta - km)n}{2(n\Delta - km)(k-1) + (1 - \alpha) n} \bar{\pi}^k.$$

Theorem 5. Let G be a connected k-uniform hypergraph on n vertices with m edges and maximum degree Δ, where $k \geq 2$. Let x be the α-Perron vector of G with maximum entry \bar{x}. For $0 \leq \alpha < 1$, we have

$$\rho_\alpha(G) \leq \alpha \Delta + (1 - \alpha) km \bar{x}^k$$

$$\rho_\alpha(G) \leq \alpha \Delta + (1 - \alpha) \left(\sum_{i \in V(G)} d_i^{\frac{k}{k-1}} \right)^{\frac{k-1}{k}} \bar{x}^{k-1}$$

with either equality if and only if G is regular.
Proof. From the eigenequation of G at $i \in V(G)$, we have
\[(\rho_\alpha - \alpha \Delta)x_i^{k-1} \leq (\rho_\alpha - \alpha d_i)x_i^{k-1} = (1 - \alpha) \sum_{e \in E_i(G) \setminus \{i\}} \prod_{v \in e \setminus \{i\}} x_v \leq (1 - \alpha)d_i x_i^{k-1}\]
with equality if and only if for $v \in e \setminus \{i\}$ with $e \in E_i(G)$, $x_v = x$. Then
\[(\rho_\alpha - \alpha \Delta)x_i^k \leq (1 - \alpha)d_i x_i^k,
\]
and thus
\[\rho_\alpha - \alpha \Delta \leq (1 - \alpha)(1 - \alpha)x_i^k \sum_{i \in V(G)} d_i = (1 - \alpha)k \max x^k \]
with equality if and only if all entries of x are equal, or equivalently, G is regular.

On the other hand, we have
\[(\rho_\alpha - \alpha \Delta) x_i^k \leq (1 - \alpha) \sum_{i \in V(G)} d_i = (1 - \alpha)k \max x^k \]
and thus
\[\rho_\alpha - \alpha \Delta \leq (1 - \alpha)(1 - \alpha)x_i^k \sum_{i \in V(G)} d_i^k = (1 - \alpha)k \max x^k \]
implying that
\[\rho_\alpha(G) \leq \alpha \Delta + (1 - \alpha) \left(\sum_{i \in V(G)} d_i^{k-1} \right)^{k-1} \]
with equality if and only if G is regular.

Let $\alpha = 0$ in Theorem 5, we have $x \geq \frac{\rho_0^{1/k}}{\sum_{i \in V(G)} d_i^{k-1} x_i}$, which has been reported in [9].

4. Transformations Increasing α-Spectral Radius

In the following, we propose several types of hypergraph transformations that increase the α-spectral radius.

Theorem 6. For $k \geq 2$, let G be a k-uniform hypergraph with $u, v_1, \ldots, v_r \in V(G)$ and $e_1, \ldots, e_r \in E(G)$ for $r \geq 1$ such that $u \notin e_i$ and $v_i \in e_i$ for $i = 1, \ldots, r$, where v_1, \ldots, v_r are not necessarily distinct. Let $e'_i = (e_i \setminus \{v_i\}) \cup \{u\}$ for $i = 1, \ldots, r$. Suppose that $e'_i \notin E(G)$ for $i = 1, \ldots, r$. Let $G' = G - \{e_1, \ldots, e_r\} + \{e'_1, \ldots, e'_r\}$. Let x the α-Perron vector of G. If $x_u \geq \max \{x_{v_1}, \ldots, x_{v_r}\}$, then $\rho_\alpha(G') > \rho_\alpha(G)$ for $0 \leq \alpha < 1$.

H. Guo and B. Zhou

Proof. From the eigenequation of G at $i \in V(G)$, we have
\[(\rho_\alpha - \alpha \Delta)x_i^{k-1} \leq (\rho_\alpha - \alpha d_i)x_i^{k-1} = (1 - \alpha) \sum_{e \in E_i(G) \setminus \{i\}} \prod_{v \in e \setminus \{i\}} x_v \leq (1 - \alpha)d_i x_i^{k-1}\]
with equality if and only if for $v \in e \setminus \{i\}$ with $e \in E_i(G)$, $x_v = x$. Then
\[(\rho_\alpha - \alpha \Delta)x_i^k \leq (1 - \alpha)d_i x_i^k,
\]
and thus
\[\rho_\alpha - \alpha \Delta \leq (1 - \alpha)(1 - \alpha)x_i^k \sum_{i \in V(G)} d_i = (1 - \alpha)k \max x^k \]
with equality if and only if all entries of x are equal, or equivalently, G is regular.

On the other hand, we have
\[(\rho_\alpha - \alpha \Delta) x_i^k \leq (1 - \alpha) \sum_{i \in V(G)} d_i = (1 - \alpha)k \max x^k \]
and thus
\[\rho_\alpha - \alpha \Delta \leq (1 - \alpha)(1 - \alpha)x_i^k \sum_{i \in V(G)} d_i^k = (1 - \alpha)k \max x^k \]
implying that
\[\rho_\alpha(G) \leq \alpha \Delta + (1 - \alpha) \left(\sum_{i \in V(G)} d_i^{k-1} \right)^{k-1} \]
with equality if and only if G is regular.

Let $\alpha = 0$ in Theorem 5, we have $x \geq \frac{\rho_0^{1/k}}{\sum_{i \in V(G)} d_i^{k-1} x_i}$, which has been reported in [9].
Proof. Note that \(\rho_{\alpha}(G) = x^\top(A_{\alpha}(G)x) \) and \(\rho_{\alpha}(G') \geq x^\top(A_{\alpha}(G')x) \) with equality if and only if \(x \) is also the \(\alpha \)-Perron vector of \(G' \). Thus

\[
\rho_{\alpha}(G') - \rho_{\alpha}(G) \geq x^\top(A_{\alpha}(G')x) - x^\top(A_{\alpha}(G)x) = \alpha \left(rx_u - \sum_{i=1}^r x_{e_i}^k \right) + (1 - \alpha)k \sum_{i=1}^r (x_u - x_{v_i})x_{e_i \setminus \{v_i\}} \geq 0,
\]

and thus \(\rho_{\alpha}(G') \geq \rho_{\alpha}(G) \). Suppose that \(\rho_{\alpha}(G') = \rho_{\alpha}(G) \). Then \(\rho_{\alpha}(G') = x^\top(A_{\alpha}(G')x) \), and thus \(x \) is the \(\alpha \)-Perron vector of \(G' \). From the eigenequations of \(G' \) and \(G \) at \(u \) and noting that \(E_u(G') = E_u(G) \cup \{e', \ldots, e'_i\} \), we have

\[
\rho_{\alpha}(G')x_u^{k-1} = \alpha(d_u + r)x_u^{k-1} + (1 - \alpha) \sum_{e \in E_u(G')} x_{e \setminus \{u\}} > \alpha d_u x_u^{k-1} + (1 - \alpha) \sum_{e \in E_u(G)} x_{e \setminus \{u\}} = \rho_{\alpha}(G)x_u^{k-1},
\]

a contradiction. It follows that \(\rho_{\alpha}(G') > \rho_{\alpha}(G) \). \(\blacksquare \)

We say that the hypergraph \(G' \) in Theorem 6 is obtained from \(G \) by moving edges \(e_1, \ldots, e_r \) from \(v_1, \ldots, v_r \) to \(u \). Theorem 6 has been established in [8] for \(\alpha \in \{0, \frac{1}{2}\} \).

Theorem 7. Let \(G \) be a connected \(k \)-uniform hypergraph with \(k \geq 2 \), and \(e \) and \(f \) be two edges of \(G \) with \(e \cap f = \emptyset \). Let \(x \) be the \(\alpha \)-Perron vector of \(G \). Let \(U \subset e \) and \(V \subset f \) with \(1 \leq |U| = |V| \leq k - 1 \). Let \(e' = U \cup (f \setminus V) \) and \(f' = V \cup (e \setminus U) \). Suppose that \(e', f' \notin E(G) \). Let \(G' = G - \{e, f\} + \{e', f'\} \). If \(x_U \geq x_V, x_{e \setminus U} \leq x_{f \setminus V} \) and one is strict, then \(\rho_{\alpha}(G) < \rho_{\alpha}(G') \) for \(0 \leq \alpha < 1 \).

Proof. Note that

\[
\rho_{\alpha}(G') - \rho_{\alpha}(G) \geq x^\top(A_{\alpha}(G')x) - x^\top(A_{\alpha}(G)x) = (1 - \alpha)k \sum_{g \in E(G')} x_g - (1 - \alpha)k \sum_{g \in E(G)} x_g = (1 - \alpha)k \left(x_U x_{f \setminus V} + x_V x_{e \setminus U} - x_U x_{e \setminus U} - x_V x_{f \setminus V} \right) = (1 - \alpha)k(x_U - x_V)(x_{f \setminus V} - x_{e \setminus U}) \geq 0.
\]

Thus \(\rho_{\alpha}(G') \geq \rho_{\alpha}(G) \). Suppose that \(\rho_{\alpha}(G') = \rho_{\alpha}(G) \). Then \(\rho_{\alpha}(G') = x^\top(A_{\alpha}(G')x) \) and thus \(x \) is the \(\alpha \)-Perron vector of \(G' \). Suppose without loss of generality that \(x_{e \setminus U} < x_{f \setminus V} \). Then for \(u \in U \)

\[
-x_{e \setminus \{u\}} + x_{e' \setminus \{u\}} = -x_{U \setminus \{u\}} \left(x_{e \setminus U} - x_{f \setminus V} \right) > 0.
\]
From the eigenequations of G' and G at a vertex $u \in U$, we have
\[
\rho_\alpha(G')x_u^{k-1} = \alpha d_u x_u^{k-1} + (1 - \alpha) \sum_{g \in E_u(G')} x_g \setminus \{u\} \\
= \alpha d_u x_u^{k-1} + (1 - \alpha) \left(\sum_{g \in E_u(G)} x_g \setminus \{u\} - x_e \setminus \{u\} + x_{e'} \setminus \{u\} \right) \\
> \alpha d_u x_u^{k-1} + (1 - \alpha) \sum_{g \in E_u(G)} x_g \setminus \{u\} = \rho_\alpha(G)x_u^{k-1},
\]
a contradiction. It follows that $\rho_\alpha(G') > \rho_\alpha(G)$. \hfill \Box

The above result has been known for $k = 2$ in [5] and $\alpha = 0$ [25].

A path $P = (v_0, e_1, v_1, \ldots, v_{s-1}, e_s, v_s)$ in a k-uniform hypergraph G is called a pendant path at v_0, if $d_G(v_0) \geq 2$, $d_G(v_i) = 2$ for $1 \leq i \leq s - 1$, $d_G(v_s) = 1$ for $v \in e_i \setminus \{v_{i-1}, v_i\}$ with $1 \leq i \leq s$, and $d_G(v_s) = 1$. If $s = 1$, then we call P or e_1 a pendant edge of G (at v_0). A pendant path of length 0 at v_0 is understood as the trivial path consisting of a single vertex v_0.

If P is a pendant path at u in a k-uniform hypergraph G, we say G is obtained from H by attaching a pendant path P at u with $H = G[V(G) \setminus (V(P) \setminus \{u\})]$. In this case, we write $G = H_u(s)$ if the length of P is s. Let $H_u(0) = H$.

For a k-uniform hypergraph G with $u \in V(G)$, and $p \geq q \geq 0$, let $G_u(p, q) = (G_u(p))_u(q)$.

Theorem 8. For $k \geq 2$, let G be a connected k-uniform hypergraph with $|E(G)| \geq 1$ and $u \in V(G)$. For $p \geq q \geq 1$ and $0 \leq \alpha < 1$, we have $\rho_\alpha(G_u(p, q)) > \rho_\alpha(G_u(p + 1, q - 1))$.

Proof. Let $(u, e_1, v_1, \ldots, e_p, v_{p+1})$ and $(u, f_1, v_1, \ldots, v_{q-1}, f_{q-1}, v_q)$ be the pendant paths of $G_u(p + 1, q - 1)$ at u of lengths $p + 1$ and $q - 1$, respectively. Let $v_0 = u$. Let x be the α-Perron vector of $G_u(p, q)$.

Suppose that $\rho_\alpha(G_u(p, q)) < \rho_\alpha(G_u(p + 1, q - 1))$. We prove that $x_{u_{q-i}} > x_{v_{q-i-1}}$ for $i = 0, \ldots, q - 1$.

Suppose that $x_{v_{q-1}} \geq x_{u_p}$. Let H be the k-uniform hypergraph obtained from $G_u(p + 1, q - 1)$ by moving e_{p+1} from u_p to v_{q-1}. By Theorem 6 and noting that $H \cong G_u(p, q)$, we have $\rho_\alpha(G_u(p, q)) = \rho_\alpha(H) > \rho_\alpha(G_u(p + 1, q - 1))$, a contradiction. Thus $x_{u_p} > x_{v_{q-1}}$.

Suppose that $q \geq 2$ and $x_{u_{q-i}} > x_{v_{q-i-1}}$, where $0 \leq i \leq q - 2$. We want to show that $x_{u_{p-(i+1)}} > x_{v_{q-(i+1)-1}}$. Suppose that this is not true, i.e., $x_{v_{q-i}} \geq x_{u_{p-i}}$. Suppose that $x_{v_{p-i}} \setminus \{u_{p-i}, u_{p-i-1}\} \leq x_{v_{q-i}} \setminus \{v_{q-i-2}, v_{q-i-1}\}$. Then $x_{v_{q-i}} \setminus \{v_{p-i}\} \leq x_{v_{p-i}} \setminus \{u_{p-i}\}$. Let $H' = G_u(p + 1, q - 1) - \{e_{p-i}, f_{q-i-1}\} + \{e', f'\}$, where $e' = \{u_{p-i}\} \cup (f_{q-i-1} \setminus \{v_{q-i-1}\})$ and $f' = \{v_{q-i-1}\} \cup (e_{p-i} \setminus \{v_{p-i}\})$. Therefore, $H' \cong G_u(p + 1, q - 1)$ and $\rho_\alpha(H') = \rho_\alpha(G_u(p + 1, q - 1))$, a contradiction. Thus $x_{u_{p-(i+1)}} > x_{v_{q-(i+1)-1}}$.

Hence, $\rho_\alpha(G_u(p, q)) > \rho_\alpha(G_u(p + 1, q - 1))$.
Theorem 9. Let G be a k-uniform hypergraph with $k \geq 2$, $e = \{v_1, \ldots, v_k\}$ be an edge of G with $d_G(v_i) \geq 2$ for $i = 1, \ldots, r$, and $d_G(v_i) = 1$ for $i = r + 1, \ldots, k$, where $3 \leq r \leq k$. Let G' be the hypergraph obtained from G by moving all edges containing v_3, \ldots, v_r but not containing v_1 from v_3, \ldots, v_r to v_1. Then $\rho_\alpha(G') > \rho_\alpha(G)$ for $0 \leq \alpha < 1$.

Proof. Let x be the α-Perron vector of G, and $x_{v_1} = \max\{x_{v_i} : 3 \leq i \leq r\}$. If $x_{v_1} \geq x_{v_t}$, then by Theorem 6, $\rho_\alpha(G') > \rho_\alpha(G)$. Suppose that $x_{v_1} < x_{v_t}$. Let G'' be the hypergraph obtained from G by moving all edges containing v_t but not containing v_1 from v_t to v_1 for all $3 \leq i \leq r$ with $i \neq t$, and moving all edges containing v_1 but not containing v_t from v_1 to v_t. It is obvious that $G'' \cong G'$. By Theorem 6, we have $\rho_\alpha(G') = \rho_\alpha(G'') > \rho_\alpha(G)$.

5. Hypergraphs with Large α-Spectral Radius

A hyperactus is a connected k-uniform hypergraph in which any two cycles (viewed as two hypergraphs) have at most one vertex in common. Let $H_{m,r,k}$ be a k-uniform hypergraph consisting of r cycles of length 2 and $m - 2r$ pendant edges with a vertex in common. If $r = 0$, then $H_{m,r,k} \cong S_{m,k}$.

Theorem 10. For $k \geq 2$, let G be a k-uniform hyperactus with m edges and r cycles, where $0 \leq r \leq \left\lfloor \frac{m}{2} \right\rfloor$ and $m \geq 2$. For $0 \leq \alpha < 1$, we have $\rho_\alpha(G) \leq \rho_\alpha(H_{m,r,k})$ with equality if and only if $G \cong H_{m,r,k}$.

Proof. Let G be a k-uniform hyperactus with maximum α-spectral radius among k-uniform hyperacti with m edges and r cycles.

Let x be the α-Perron vector of G.

\{u_{p-i}\}. Obviously, $H' \cong G_u(p, q)$. By Theorem 7, we have $\rho_\alpha(G_u(p, q)) = \rho_\alpha(H') > \rho_\alpha(G_u(p+1, q-1))$, a contradiction. Thus $x_{u_{p-i}} > x_{u_{p-i+1}}$, and then $x_{u_{p-i}} > x_{e_{q-i-1}}$. Let $H'' = G_u(p+1, q-1) - \{e_{p-i}, f_{q-i-1}\} + \{e''_i, f''_i\}$, where $e''_i = (e_{p-i} \cup \{u_{p-i-1}\}) \cup \{v_i, q-i-2\}$ and $f''_i = (f_{q-i-1} \cup \{v_i, q-i-2\}) \cup \{u_{p-i-1}\}$. Obviously, $H'' \cong G_u(p, q)$. By Theorem 7, we have $\rho_\alpha(G_u(p, q)) = \rho_\alpha(H'') > \rho_\alpha(G_u(p+1, q-1))$, also a contradiction.

It follows that $\rho_\alpha(G_u(p, q)) > \rho_\alpha(G_u(p+1, q-1))$.

The above result has been reported for $k = 2$ in [5] and $\alpha = 0$ in [25].
Suppose first that \(r = 0 \), i.e., \(G \) is a hypertree with \(m \) edges. Let \(d \) be diameter of \(G \). Obviously, \(d \geq 2 \). Suppose that \(d \geq 3 \). Let \((u_0, e_1, u_1, \ldots, e_k, u_d) \) be a diametral path of \(G \). Choose \(u \in e_{d-1} \) with \(u = \max\{x_v : v \in e_{d-1}\} \). Let \(G_1 \) be the hypertree obtained from \(G \) by moving all edges (except \(e_{d-1} \)) containing a vertex of \(e_{d-1} \) different from \(u \) from these vertices to \(u \). By Theorem 6, we have \(\rho_\alpha(G_1) > \rho_\alpha(G) \), a contradiction. Thus \(d = 2 \), implying that \(G \cong S_{m,k} = H_{m,0,k} \).

Suppose in the following that \(r \geq 1 \).

If there exists an edge \(e \) with at least three vertices of degree at least 2, then let \(e = \{v_1, \ldots, v_k\} \) with \(d_G(v_i) \geq 2 \) for \(i = 1, \ldots, \ell \), and \(d_G(v_1) = 1 \) for \(i = \ell + 1, \ldots, k \), where \(3 \leq \ell \leq k \). Let \(G' \) be the hypergraph obtained from \(G \) by moving all edges containing \(v_3, \ldots, v_\ell \) except \(e \) from \(v_3, \ldots, v_\ell \) to \(v_1 \). Obviously, \(G' \) is a \(k \)-uniform hypercactus with \(m \) edges and \(r \) cycles. By Theorem 9, \(\rho_\alpha(G') > \rho_\alpha(G) \), a contradiction. Thus, every edge in \(G \) has \(k - 2 \) vertices of degree 1.

Suppose that there exist two vertex-disjoint cycles. We choose two such cycles \(C_1 \) and \(C_2 \) by requiring that \(d_G(C_1, C_2) \) is as small as possible, where \(d_G(C_1, C_2) = \min\{d_G(u, v) : u \in V(C_1), v \in V(C_2)\} \). Let \(u \in V(C_1) \) and \(v \in V(C_2) \) with \(d_G(C_1, C_2) = d_G(u, v) \). We may assume that \(u_x \geq v_x \). Let \(G'' \) be the hypergraph obtained from \(G \) by moving edges containing \(v_x \) from \(C_2 \) to \(v \). Obviously, \(G'' \) is a \(k \)-uniform hypercactus with \(m \) edges and \(r \) cycles. By Theorem 6, \(\rho_\alpha(G'') > \rho_\alpha(G) \), a contradiction. Thus, if \(r \geq 2 \), then all cycles in \(G \) share a common vertex, which we denote by \(w \). If \(r = 1 \), then \(w \) is a vertex of degree 2 of the unique cycle.

Let \((v_0, e_1, v_1, \ldots, v_{\ell-1}, e_\ell, v_0) \) be a cycle of \(G \) of length \(\ell \geq 2 \), where \(v_0 = w \). Suppose that \(\ell \geq 3 \). Assume that \(x_{v_0} \geq x_{v_2} \). Let \(G^* \) be the hypergraph obtained from \(G \) by moving the edge \(e_2 \) from \(v_2 \) to \(v_0 \). Obviously, \(G^* \) is a \(k \)-uniform hypercactus with \(m \) edges and \(r \) cycles. By Theorem 6, \(\rho_\alpha(G^*) > \rho_\alpha(G) \), a contradiction. Thus, every cycle of \(G \) is of length 2, and there are exactly \(m - 2r \) edges that are not on any cycle.

Suppose that \(G \not\cong H_{m,r,k} \). Then there exists a vertex \(z \) such that \(d_G(w, z) = 2 \). Let \(z' \) be the unique vertex such that \(d_G(w, z') = d_G(z', z) = 1 \). There are two cases. First suppose that \(z' \) lies on some cycle. Let \(e_1 \) and \(e_2 \) be the cycle containing \(w \) and \(z' \). Let \(H \) be the hypergraph obtained from \(G \) by moving all edges containing \(z' \) except \(e_1 \) and \(e_2 \) from \(z' \) to \(w \) if \(x_w \geq x_{z'} \), and the hypergraph obtained from \(G \) by moving all edges containing \(w \) except \(e_1 \) and \(e_2 \) from \(w \) to \(z \) otherwise. Now suppose that \(z' \) does not lie on any cycle. Let \(e \) be the edge containing \(w \) and \(z' \). Let \(H \) be the hypergraph obtained from \(G \) by moving all edges containing \(z' \) except \(e \) from \(z' \) to \(w \) if \(x_w \geq x_{z'} \), and the hypergraph obtained from \(G \) by moving all edges containing \(w \) except \(e \) from \(w \) to \(z \) otherwise. In either case, \(H \) is a \(k \)-uniform hypercactus with \(m \) edges and \(r \) cycles. By Theorem 6, \(\rho_\alpha(H) > \rho_\alpha(G) \), a contradiction. It follows that \(G \cong H_{m,r,k} \).
Corollary 11. Suppose that $k \geq 2$.

(i) If G is a k-uniform hypertree with $m \geq 1$ edges, then $\rho_\alpha(G) \leq \rho_\alpha(S_{m,k})$ for $0 \leq \alpha < 1$ with equality if and only if $G \cong S_{m,k}$.

(ii) If G is a k-uniform unicyclic hypergraphs with $m \geq 2$ edges, then $\rho_\alpha(G) \leq \rho_\alpha(H_{m,1,k})$ for $0 \leq \alpha < 1$ with equality if and only if $G \cong H_{m,1,k}$.

The cases when $\alpha = 0$ in Corollary 11 (i) and (ii) have been known in [8, 2].

For $2 \leq d \leq m$, let $S_{m,d,k}$ be the k-uniform hypertree obtained from the k-uniform loose path $P_{d,k} = (v_0, e_1, v_1, \ldots, v_{d-1}, e_d, v_d)$ by attaching $m - d$ pendant edges at $v_{\lceil \frac{d}{2} \rceil}$. Obviously, $S_{m,2,k} \cong S_{m,k}$.

Theorem 12. For $k \geq 2$, let G be a k-uniform hypertree with m edges and diameter $d \geq 2$. For $0 \leq \alpha < 1$, we have $\rho_\alpha(G) \leq \rho_\alpha(S_{m,d,k})$ with equality if and only if $G \cong S_{m,d,k}$.

Proof. It is trivial for $d = 2$. Suppose that $d \geq 3$.

Let G be a k-uniform hypertree with maximum α-spectral radius among hypertrees with m edges and diameter d.

Let $P = (v_0, e_1, v_1, \ldots, e_d, v_d)$ be a diametral path of G. Let x be the α-Perron vector of G.

Claim 1. Every edge of G has at least $k - 2$ vertices of degree 1.

Proof. Suppose that there is at least one edge with at least three vertices of degree at least 2. Let $f = \{u_1, \ldots, u_k\}$ be such an edge. First suppose that f is not an edge on P. We may assume that $d_G(u_i, P) = d_G(u_i, P) - 1$ for $i = 2, \ldots, k$, where $d_G(u_i, P) = \min\{d_G(u_i, v) : v \in V(P)\}$. Then $d_G(u_1) \geq 2$. We may assume that $d_G(u_i) \geq 2$ for $i = 2, \ldots, r$ and $d_G(u_i) = 1$ for $i = r + 1, \ldots, k$, where $3 \leq r \leq k$. Let G' be the hypertree obtained from G by moving all edges containing u_3, \ldots, u_r except f from u_3, \ldots, u_r to u_1. Obviously, G' is a hypertree with m edges and diameter d. By Theorem 9, $\rho_\alpha(G') > \rho_\alpha(G)$, a contradiction. Thus f is an edge on P, i.e., $f = e_i$ for some i with $2 \leq i \leq d - 1$.

Let $e_i \setminus \{v_{i-1}, v_i\} = \{v_{i,1}, \ldots, v_{i,k-2}\}$. We may assume that $v_{i,1}, \ldots, v_{i,s}$ are precisely those vertices with degree at least 2 among $v_{i,1}, \ldots, v_{i,k-2}$, where $1 \leq s \leq k - 2$. Let G'' be the hypertree obtained from G by moving all edges containing $v_{i,1}, \ldots, v_{i,s}$ except e_i from $v_{i,1}, \ldots, v_{i,s}$ to v_i. Obviously, G'' is a hypertree with m edges and diameter d. By Theorem 9, $\rho_\alpha(G'') > \rho_\alpha(G)$, also a contradiction. It follows that all edges of G have at most two vertices of degree at least 2. Claim 1 follows.

Claim 2. Any edge not on P is a pendant edge.

Proof. Suppose that e is an edge not on P and it is not a pendant edge. Then there are two vertices, say u and v, in e such that $d_u \geq 2$ and $d_v \geq 2$. Suppose
without loss of generality that $d_G(u, P) < d_G(v, P)$. Let w be the vertex on P with $d_G(u, P) = d_G(u, w)$. Let G^* be the hypertree obtained from G by moving all edges containing v except e from v to w if $x_w \geq x_v$, and the hypertree obtained from G by moving all edges containing w (except the edge in the path connecting w and v) from w to v otherwise. By Theorem 6, $\rho_\alpha(G^*) > \rho_\alpha(G)$, a contradiction. This proves Claim 2.

Claim 3. There is at most one vertex of degree greater than two in G.

Proof. Suppose that there are two vertices, say s and t, on P with degree greater than two. We may assume that $x_s \geq x_t$. Let H be the hypertree obtained from G by moving all pendant edges containing t from t to s. By Theorem 6, we have $\rho_\alpha(H) > \rho_\alpha(G)$, a contradiction. Claim 3 follows.

Combining Claims 1–3, G is a hypertree obtained from the path P by attaching $m - d$ pendant edges at some v_i with $1 \leq i \leq d - 1$, and by Theorem 8, we have $G \cong S_{m,d,k}$.

The above result for $\alpha = 0$ has been proved in [25] by a relation between the 0-spectral radius of a power hypergraph and the 0-spectral radius of its graph. Recall that for $\alpha = 0$ and $k = 2$, Simić and one author of this paper [23] determined the tree on n vertices and diameter d with the largest 0-spectral radius for $k = 1, \ldots, \left\lfloor \frac{d}{2} \right\rfloor + 1$ if $4 \leq d \leq n - 4$ and for $k = 1, \ldots, \left\lfloor \frac{d}{2} \right\rfloor$ if $d = n - 3$.

Suppose that $m \geq d \geq 3$. Let H be the hypergraph obtained from $S_{m,d,k}$ by moving edge e_d from v_{d-1} to $v_{\left\lfloor \frac{d}{2} \right\rfloor + 1}$ if $x_{v_{d-1}} \geq x_{v_{\left\lfloor \frac{d}{2} \right\rfloor + 1}}$, and the hypergraph obtained from $S_{m,d,k}$ by moving edges containing $v_{\left\lfloor \frac{d}{2} \right\rfloor + 1}$ from $v_{\left\lfloor \frac{d}{2} \right\rfloor + 1}$ to v_{d-1} otherwise. Obviously, $H \cong S_{m,d-1,k}$. By Theorem 6, $\rho_\alpha(S_{m,d,k}) < \rho_\alpha(S_{m,d-1,k})$.

Now by Theorem 12, Corollary 11(i) follows. Moreover, if G is a k-uniform hypertree with $m \geq 3$ edges and $G \not\cong S_{m,k}$, $\rho_\alpha(G) \leq \rho_\alpha(S_{m,3,k})$ with equality if and only if $G \cong S_{m,3,k}$, which has been known for $\alpha = 0$ in [8].

For $2 \leq t \leq m$, let $T_{m,t,k}$ be the k-uniform hypertree consisting of t pendant paths of almost equal lengths (i.e., $t - (m - t \left\lceil \frac{m}{t} \right\rceil)$ pendant paths of length $\left\lceil \frac{m}{t} \right\rceil$ and $m - t \left\lceil \frac{m}{t} \right\rceil$ pendant paths of length $\left\lceil \frac{m}{t} \right\rceil + 1$) at a common vertex. Particularly, $T_{m,2,k}$ is just the k-uniform loose path $P_{m,k}$.

Theorem 13. Let G be a k-uniform hypertree with m edges and $t \geq 2$ pendant edges. For $0 \leq \alpha < 1$, we have $\rho_\alpha(G) \leq \rho_\alpha(T_{m,t,k})$ with equality if and only if $G \cong T_{m,t,k}$.

Proof. Let G be a k-uniform hypertree with maximum α-spectral radius among hypertrees with m edges and t pendant edges. Let x be the α-Perron vector of G.

Suppose that there exists an edge $e = \{u_1, \ldots, u_k\}$ with at least three vertices of degree at least 2. Assume that $d_G(u_i) \geq d_G(u_{i+1})$ for $i = 1, \ldots, k-1$. Let G' be the hypertree obtained from G by moving all edges containing u_3, \ldots, u_k except
e from these vertices to u_1. Obviously, G' is a hypertree with m edges and t pendant edges. By Theorem 9, $\rho_\alpha(G') > \rho_\alpha(G)$, a contradiction. It follows that each edge of G has at most two vertices of degree at least 2.

Suppose that there are two vertices, say u, v with degree greater than 2. We may assume that $x_u \geq x_v$. Let H be the hypertree obtained from G by moving an edge not on the path connecting u and v containing v from v to u. By Theorem 6, we have $\rho_\alpha(H) > \rho_\alpha(G)$, a contradiction. Thus, there is at most one vertex of degree greater than 2 in G.

If there is no vertex of degree greater than 2, then $t = 2$, and G is the k-uniform loose path $P_{m,k}$. If there is exactly one vertex of degree greater than 2, then $t \geq 3$, G is a hypertree consisting of t pendant paths at a common vertex, and by Theorem 8, we have $G \cong T_{m,t,k}$.

For $\alpha = 0$, this is known in [26, 30].

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11671156) and the Innovation Project of Graduate School of South China Normal University.

References

doi:10.1016/j.laa.2011.11.018

doi:10.7151/dmgt.1906

doi:10.1016/j.laa.2011.02.042

ArXiv:1805.03456

doi:10.1016/j.laa.2014.11.020

doi:10.1016/j.laa.2015.04.023

doi:10.1016/j.laa.2013.11.008

doi:10.1016/j.laa.2013.07.010

doi:10.2298/AADM0702446S

doi:10.1016/j.laa.2017.02.018

doi:10.1016/j.laa.2017.09.009

doi:10.1080/03081087.2018.1453471

doi:10.1137/090778766

doi:10.1016/j.laa.2016.01.031

doi:10.1016/j.laa.2015.06.023

doi:10.1080/03081087.2018.1442811

Received 14 August 2018
Revised 24 April 2019
Accepted 24 April 2019