BALANCEDNESS AND THE LEAST LAPLACIAN EIGENVALUE OF SOME COMPLEX UNIT GAIN GRAPHS

FRANCESCO BELARDO

MAURIZIO BRUNETTI

Department of Mathematics and Applications
University ‘Federico II’, Naples, Italy
e-mail: fbelardo@unina.it, mbrunett@unina.it

AND

NATHAN REFF

Department of Mathematics
The College at Brockport: State University of New York
Brockport, NY 14420, USA
e-mail: nreff@brockport.edu

Abstract

Let $T_4 = \{\pm 1, \pm i\}$ be the subgroup of 4-th roots of unity inside T, the multiplicative group of complex units. A complex unit gain graph Φ is a simple graph $\Gamma = (V(\Gamma) = \{v_1, \ldots, v_n\}, E(\Gamma))$ equipped with a map $\varphi : \overrightarrow{E(\Gamma)} \rightarrow T$ defined on the set of oriented edges such that $\varphi(v_i, v_j) = \varphi(v_j, v_i)^{-1}$. The gain graph Φ is said to be balanced if for every cycle $C = v_{i_1}v_{i_2} \cdots v_{i_k}v_{i_1}$ we have $\varphi(v_{i_1}, v_{i_2})\varphi(v_{i_2}, v_{i_3}) \cdots \varphi(v_{i_k}, v_{i_1}) = 1$.

It is known that Φ is balanced if and only if the least Laplacian eigenvalue $\lambda_n(\Phi)$ is 0. Here we show that, if Φ is unbalanced and $\varphi(\Phi) \subseteq T_4$, the eigenvalue $\lambda_n(\Phi)$ measures how far is Φ from being balanced. More precisely, let $\nu(\Phi)$ (respectively, $\epsilon(\Phi)$) be the number of vertices (respectively, edges) to cancel in order to get a balanced gain subgraph. We show that

$$\lambda_n(\Phi) \leq \nu(\Phi) \leq \epsilon(\Phi).$$

We also analyze the case when $\lambda_n(\Phi) = \nu(\Phi)$. In fact, we identify the structural conditions on Φ that lead to such equality.

Keywords: gain graph, Laplacian eigenvalues, balanced graph, algebraic frustration.

2010 Mathematics Subject Classification: 05C50, 05C22.
REFERENCES

 doi:10.1016/j.laa.2011.06.035

 doi:10.1016/j.laa.2014.01.001

 doi:10.1016/j.laa.2011.11.015

 doi:10.1002/jgt.22057

 doi:10.1017/CBO9781139020411

 doi:10.13001/1081-3810.3029

 doi:10.1016/j.laa.2016.05.040

 doi:10.1007/s10114-007-1000-2

 doi:10.1016/j.disc.2017.07.003

 doi:10.1016/0095-8956(89)90063-4

Received 11 June 2019
Revised 15 October 2019
Accepted 24 October 2019