EXISTENCE OF REGULAR NUT GRAPHS FOR DEGREE AT MOST 11

PATRICK W. FOWLER

Department of Chemistry
University of Sheffield, Sheffield, United Kingdom

e-mail: p.w.fowler@sheffield.ac.uk

JOHN BAPTIST GAUCI

Department of Mathematics
University of Malta, Msida, Malta

e-mail: john-baptist.gauci@um.edu.mt

JAN GOEDGEBEUR1

Department of Applied Mathematics, Computer Science & Statistics
Ghent University, Ghent, Belgium

Computer Science Department,
University of Mons, Mons, Belgium

e-mail: jan.goedgebeur@ugent.be

TOMAŽ PISANSKI2

Department of Information Sciences and Technologies
University of Primorska, Koper, Slovenia

Department of Mathematics,
University of Ljubljana, Ljubljana, Slovenia

e-mail: pisanski@upr.si

AND

IRENE SCRIRHA

Department of Mathematics
University of Malta, Msida, Malta

e-mail: irene.scrihia-aquilina@um.edu.mt

1Supported by a Postdoctoral Fellowship of the Research Foundation Flanders (FWO).

2Supported in part by the Slovenian Research Agency (research program P1-0294 and research projects N1-0032, J1-9187, J1-1690), and in part by H2020 Teaming InnoRenew CoE.
Dedicated to the memory of Slobodan Simić.

Abstract

A nut graph is a singular graph with one-dimensional kernel and corresponding eigenvector with no zero elements. The problem of determining the orders \(n\) for which \(d\)-regular nut graphs exist was recently posed by Gauci, Pisanski and Sciriha. These orders are known for \(d \leq 4\). Here we solve the problem for all remaining cases \(d \leq 11\) and determine the complete lists of all \(d\)-regular nut graphs of order \(n\) for small values of \(d\) and \(n\). The existence or non-existence of small regular nut graphs is determined by a computer search. The main tool is a construction that produces, for any \(d\)-regular nut graph of order \(n\), another \(d\)-regular nut graph of order \(n + 2d\). If we are given a sufficient number of \(d\)-regular nut graphs of consecutive orders, called seed graphs, this construction may be applied in such a way that the existence of all \(d\)-regular nut graphs of higher orders is established. For even \(d\) the orders \(n\) are indeed consecutive, while for odd \(d\) the orders \(n\) are consecutive even numbers. Furthermore, necessary conditions for combinations of order and degree for vertex-transitive nut graphs are derived.

Keywords: nut graph, core graph, regular graph, nullity.

2010 Mathematics Subject Classification: 05C30, 05C50, 05C75, 05C90, 68R10.

References

doi:10.1002/(SICI)1097-0118(199902)30:2⟨137::AID-JGT7⟩3.0.CO;2-G

doi:10.1016/S0012-365X(97)00036-8

doi:10.13001/1081-3810.1215

doi:10.26493/1855-3974.20.7cc

Received 30 August 2019
Revised 6 November 2019
Accepted 7 November 2019