A SPECTRAL CHARACTERIZATION OF THE s-CLIQUE EXTENSION OF THE TRIANGULAR GRAPHS

YING-YING TAN

School of Mathematics & Physics
Anhui Jianzhu University, Hefei, Anhui, 230201, PR China

e-mail: tansusan1@ahjzu.edu.cn

JACK H. KOOLEN

School of Mathematical Sciences
University of Science and Technology of China, Hefei, Anhui, 230026, PR China
Wen-Tsun Wu Key Laboratory of the CAS, School of Mathematical Sciences
University of Science and Technology of China, Hefei, Anhui, 230026, PR China

e-mail: koolen@ustc.edu.cn

AND

ZHENG-JIANG XIA

School of Finance, Anhui University of Finance and Economics
Bengbu, Anhui, 233030, PR China

e-mail: xzj@mail.ustc.edu.cn

This paper is dedicated to the memory of Prof. Slobodan Simić.

Abstract

A regular graph is co-edge regular if there exists a constant μ such that any two distinct and non-adjacent vertices have exactly μ common neighbors. In this paper, we show that for integers $s \geq 2$ and n large enough, any co-edge-regular graph which is cospectral with the s-clique extension of the triangular graph $T(n)$ is exactly the s-clique extension of the triangular graph $T(n)$.

Keywords: co-edge-regular graph, s-clique extension, triangular graph.

2010 Mathematics Subject Classification: 05C50, 05C75, 05C62.

1Corresponding author.
1. Introduction

All graphs in this paper are simple and undirected. For definitions related to distance-regular graphs, see [1, 11]. Before we state the main result, we give more definitions.

Let \(G \) be a simple connected graph on vertex set \(V(G) \), edge set \(E(G) \) and adjacency matrix \(A \). The eigenvalues of \(G \) are the eigenvalues of \(A \). Let \(\lambda_0, \lambda_1, \ldots, \lambda_t \) be the distinct eigenvalues of \(G \) and \(m_i \) be the multiplicity of \(\lambda_i \) \((i = 0, 1, \ldots, t)\). Then the multiset \(\{\lambda_{m_0}, \lambda_{m_1}, \ldots, \lambda_{m_t}\} \) is called the spectrum of \(G \). Two graphs are called cospectral if they have the same spectrum. Note that a graph \(H \) cospectral with a \(k \)-regular graph \(G \) is also \(k \)-regular.

Recall that a regular graph is called co-edge-regular, if there exists a constant \(\mu \) such that any two distinct and non-adjacent vertices have exactly \(\mu \) common neighbors. Our main result in this paper is as follows.

Theorem 1. Let \(\Gamma \) be a co-edge-regular graph with spectrum

\[
\{(2sn - 3s - 1)^1, (sn - 3s - 1)^{n-1}, (-s - 1)^{n^2 - 3n - 1} \bigg(\frac{n^2 - 3n - 1}{2}\bigg), (-1)^{\frac{(s-1)n(n-1)}{2}}\} \]

where \(s \geq 2 \) and \(n \geq 1 \) are integers. If \(n \geq 48s \), then \(\Gamma \) is the \(s \)-clique extension of the triangular graph \(T(n) \).

This paper is a follow-up paper of Hayat, Koolen and Riaz [4]. They showed a similar result for the square grid graphs. In that paper, they gave the following conjecture.

Conjecture 2 [4]. Let \(\Gamma \) be a connected co-edge-regular graph with four distinct eigenvalues. Let \(t \geq 2 \) be an integer and \(|V(\Gamma)| = n(\Gamma) \). Then there exists a constant \(n_t \) such that, if \(\theta_{\min}(\Gamma) \geq -t \) and \(n(\Gamma) \geq n_t \) both hold, then \(\Gamma \) is the \(s \)-clique extension of a strongly regular graph for some \(2 \leq s \leq t - 1 \).

This conjecture is wrong as the \(p \times q \)-grids \((p > q \geq 2)\) show. So we would like to modify this conjecture as follows.

Conjecture 3. Let \(\Gamma \) be a connected co-edge-regular graph with parameters \((n, k, \mu)\) having four distinct eigenvalues. Let \(t \geq 2 \) be an integer. Then there exists a constant \(n_t \) such that, if \(\theta_{\min}(\Gamma) \geq -t \), \(n \geq n_t \) and \(k < n - 2 - \frac{(t-1)^2}{4} \), then either \(\Gamma \) is the \(s \)-clique extension of a strongly regular graph for \(2 \leq s \leq t - 1 \) or \(\Gamma \) is a \(p \times q \)-grid with \(p > q \geq 2 \).

The reason for the valency condition is, that in [12], it was shown that for \(\lambda \geq 2 \), there exist constants \(C(\lambda) \) such that a connected \(k \)-regular co-edge-regular graph with order \(v \) and smallest eigenvalue at least \(-\lambda\) satisfies one of the following conditions.
(i) $v - k - 1 \leq \frac{(\lambda - 1)^2}{4} + 1$, or;
(ii) Every pair of distinct non-adjacent vertices has at most $C(\lambda)$ common neighbours.

Koolen et al. [8] improved this result by showing that one can take $C(\lambda) = (\lambda - 1)\lambda^2$ if k is much larger than λ. This paper is part of the project to show the conjecture for $t = 3$.

Another motivation comes from the lecture notes [9]. In these notes, Terwilliger shows that any local graph of a thin Q-polynomial distance-regular graph is co-edge-regular and has at most five distinct eigenvalues. So it is interesting to study co-edge-regular graphs with a few distinct eigenvalues.

We mainly follow the method of Hayat et al. [4]. The main difference is that we simplify the method of Hayat et al. when we show that every vertex lies on exactly two lines. This leads to a better bound for which we can show this. This will also improve the bound given in the result of Hayat et al.

2. Preliminaries

2.1. Definitions

For two distinct vertices x and y, we write $x \sim y$ (respectively, $x \nsim y$) if they are adjacent (respectively, nonadjacent) to each other. For a vertex x of G, we define $N_G(x) = \{y \in V(G) \mid y \sim x\}$, and $N_G(x)$ is called the neighborhood of x. The graph induced by $N_G(x)$ is called the local graph of G with respect to x and is denoted by $G(x)$. We denote the number of common neighbors between two distinct vertices x and y by λ_{xy} (respectively, μ_{xy}) if $x \sim y$ (respectively, $x \nsim y$).

A graph is called regular if every vertex has the same valency. A regular graph G with n vertices and valency k is called co-edge-regular with parameters (n, k, μ) if any two nonadjacent vertices have exactly $\mu = \mu(G)$ common neighbors. In addition, if any two adjacent vertices have precisely $\lambda = \lambda(G)$ common neighbors, then G is called strongly regular with parameters (n, k, λ, μ). A graph G is called walk-regular if the number of closed walks of length r from a given vertex x is independent of the choice of x for all r, that is to say, for any x, A_{xx}^r is constant for all r, where A is the adjacency matrix of G.

Let X be a set of size t. The Johnson graph $J(t, d)$ ($t \geq 2d$) is a graph with vertex set $\binom{X}{d}$, the set of d-subsets of X, where two d-subsets are adjacent whenever they have $d - 1$ elements in common. $J(t, 2)$ is the triangular graph $T(t)$. Recall that a clique (or a complete graph) is a graph in which every pair of vertices is adjacent. A co-clique is a graph that any two distinct vertices are nonadjacent. A t-clique is a clique with t-vertices and is denoted by K_t. The line graph of K_t is also the triangular graph $T(t)$ which is strongly regular with
parameters \((t^3, 2t - 4, t - 2, 4)\) and spectrum \(\{(2t - 4)^1, (t - 4)^{t-1}, (-2)^{2t-2}\}\).

The Kronecker product \(M_1 \otimes M_2\) of two matrices \(M_1\) and \(M_2\) is obtained by replacing the \(ij\)-entry of \(M_1\) by \((M_1)_{ij}M_2\) for all \(i\) and \(j\). Note that if \(\tau\) and \(\eta\) are eigenvalues of \(M_1\) and \(M_2\), respectively, then \(\tau\eta\) is an eigenvalue of \(M_1 \otimes M_2\).

2.2. Interlacing

Lemma 4 ([6], Interlacing). Let \(N\) be a real symmetric \(n \times n\) matrix with eigenvalues \(\theta_1 \geq \cdots \geq \theta_n\) and \(R\) be a real \(n \times m\) \((m < n)\) matrix with \(R^TR = I\). Set \(M = R^TNR\) with eigenvalues \(\mu_1 \geq \cdots \geq \mu_m\). Then

(i) the eigenvalues of \(M\) interlace those of \(N\), i.e.,

\[\theta_i \geq \mu_i \geq \theta_{n-m+i}, \quad i = 1, 2, \ldots, m, \]

(ii) if the interlacing is tight, that is, there exists an integer \(j \in \{1, 2, \ldots, m\}\) such that \(\theta_i = \mu_i\) for \(1 \leq i \leq j\) and \(\theta_{n-m+i} = \mu_i\) for \(j+1 \leq i \leq m\), then \(RM = NR\).

In the case that \(R\) is permutation-similar to \(\begin{pmatrix} I & O \\ O & O \end{pmatrix}\), then \(M\) is just a principal submatrix of \(N\).

Let \(\pi = \{V_1, \ldots, V_m\}\) be the partition of the index set of the columns of \(N\) and let \(N\) be partitioned according to \(\pi\) as

\[
\begin{pmatrix}
N_{1,1} & \ldots & N_{1,m} \\
\vdots & \ddots & \vdots \\
N_{m,1} & \ldots & N_{m,m}
\end{pmatrix},
\]

where \(N_{i,j}\) denotes the block matrix of \(N\) formed by rows in \(V_i\) and columns in \(V_j\). The **characteristic matrix** \(P\) is the \(n \times m\) matrix whose \(j\)th column is the characteristic vector of \(V_j\) \((j = 1, \ldots, m)\). The **quotient matrix** of \(N\) with respect to \(\pi\) is the \(m \times m\) matrix \(Q\) whose entries are the average row sum of the blocks \(N_{ij}\) of \(N\), i.e.,

\[
Q_{i,j} = \frac{1}{V_i} (P^TNP)_{i,j}.
\]

The partition \(\pi\) is called **equitable** if each block \(N_{i,j}\) of \(N\) has constant row (and column) sum, i.e., \(PQ = NP\). The following lemma can be shown by using Lemma 4.

Lemma 5 [5]. Let \(N\) be a real symmetric matrix with \(\pi\) as a partition of the index set of its columns. Suppose \(Q\) is the quotient matrix of \(N\) with respect to \(\pi\), then the following hold.
A Spectral Characterization of the s-Clique Extension of ... 5

(i) The eigenvalue of Q interlace the eigenvalues of N.

(ii) If the interlacing is tight (as defined in Lemma 4(ii)), then the partition π is equitable.

By an equitable partition of a graph, we always mean an equitable partition of its adjacency matrix A.

2.3. Clique extensions of $T(n)$

In this subsection, we define s-clique extensions of graphs and we will give some specific results for the s-clique extension of triangular graphs.

Recall an s-clique is a clique with s vertices, where s is a positive integer. The s-clique extension of a graph G with $|V(G)|$ vertices is the graph \tilde{G} obtained from G by replacing each vertex $x \in V(G)$ by a clique \tilde{X} with s vertices, satisfying $\tilde{x} \sim \tilde{y}$ in \tilde{G} if and only if $x \sim y$ in G, where $\tilde{x} \in \tilde{X}, \tilde{y} \in \tilde{Y}$. If \tilde{G} is an s-clique extension of G, then the adjacency matrix of \tilde{G} is $(A + I_{|V(G)|}) \otimes J_s - I_s |V(G)|$, where J_s is the all-ones matrix of size s and $I_s |V(G)|$ is the identity matrix of size $|V(G)|$. In particular, if G has $t + 1$ distinct eigenvalues and its spectrum is

\begin{equation}
\{\theta_{m_0}, \theta_{m_1}, \ldots, \theta_{m_t}\},
\end{equation}

then the spectrum of \tilde{G} is

\begin{equation}
\left\{ (s(\theta_0 + 1) - 1)^{m_0}, (s(\theta_1 + 1) - 1)^{m_1}, \ldots, (s(\theta_t + 1) - 1)^{m_t}, (-1)^{(s-1)(m_0 + m_1 + \cdots + m_t)} \right\}.
\end{equation}

Note that if the adjacency matrix A of a connected regular graph G with $|V(G)|$ vertices and valency k has four distinct eigenvalues $\{\theta_0 = k, \theta_1, \theta_2, \theta_3\}$, then A satisfies the following equation (see [7]):

\begin{equation}
A^3 - \left(\sum_{i=1}^{3} \theta_i \right) A^2 + \left(\sum_{1 \leq i < j \leq 3} \theta_i \theta_j \right) A - \theta_1 \theta_2 \theta_3 I = \frac{\prod_{i=1}^{3} (k - \theta_i)}{|V(G)|} J.
\end{equation}

This implies that G is walk-regular, see [10].

Now we assume Γ is a cospectral graph with the s-clique extension of the triangular graph $T(n)$, where $s \geq 2$ and $n \geq 4$ are integers. Then by (2.1) and (2.2), the graph Γ has spectrum

\begin{equation}
\left\{ \theta_{m_0}, \theta_{m_1}, \theta_{m_2}, \theta_{m_3} \right\}

= \left\{ (s(2n - 3) - 1)^1, (s(n - 3) - 1)^{n-1}, (-s - 1)^{\frac{s^2 - 3n}{2}}, (-1)^{(s-1)(n-1)} \right\}.
\end{equation}
Note that Γ is regular with valency k, where $k = (s-1) + 2(n-2)s = s(2n-3) - 1$. Using (2.3), we obtain
\[
A^3 + (3 + 4s - sn)A^2 + ((3 - n)s^2 + (8 - 2n)s + 3)A
+ (1 - (n - 4)s - (n - 3)s^2)I = 4s^2(2n - 3)J.
\]
Therefore,
\[
A^3_{xy} = \begin{cases}
2s^2n^2 - 2s^2n - 6sn - 3s^2 + 9s + 2, & \text{if } x = y, \\
9s^2n + 2sn - 15s^2 - 8s - 3 - (3 + 4s - sn)\lambda_{xy}, & \text{if } x \sim y, \\
8s^2n - 12s^2 - (3 + 4s - sn)\mu_{xy}, & \text{if } x \nsim y.
\end{cases}
\]

The following result is known as the Hoffman bound.

Lemma 6 (Cf. [2], Theorem 3.5.2). Let X be a k-regular graph with least eigenvalue τ. Let $\alpha(X)$ be the size of maximum coclique in X. Then
\[
\alpha(X) \leq \frac{|X|}{k - \tau} (-\tau).
\]
If equality holds, then each vertex not in a coclique of size $\alpha(X)$ has exactly $-\tau$ neighbours in it.

Applying Lemma 6 to the complement of Γ, we obtain the following lemma.

Lemma 7. For any clique C of Γ with order c, we have
\[
c \leq s(n - 1).
\]
If equality holds, then every vertex $x \in V(\Gamma) \setminus V(C)$ has exactly $2s$ neighbours in C.

3. **Lines in Γ**

Recall that Γ is a graph that is cospectral with the s-clique extension of the triangular graph $T(n)$, where $s \geq 2$ and $n \geq 1$ are integers. This implies that Γ is walk-regular. Now we assume that Γ is also co-edge-regular, i.e., there exist precisely $\mu = \mu(\Gamma)$ common neighbors between any two distinct nonadjacent vertices of Γ. Note that for Γ, we have $\mu = 4s$ from the spectrum of the s-clique extension of $T(n)$.

Fix a vertex, denoted by ∞ and let $\Gamma(\infty)$ be the local graph of Γ at vertex ∞. Let $V(\Gamma(\infty)) = \{x_1, x_2, \ldots, x_k\}$, where $k = s(2n - 3) - 1$. Let x_i have valency d_i inside $\Gamma(\infty)$ for $i = 1, 2, \ldots, k$. Because Γ is walk-regular, the number of closed walks through a fixed vertex ∞ of length 3 and 4 only depends on the spectrum.
This means that the number of edges in $\Gamma(\infty)$ is determined by the spectrum and as Γ is co-edge-regular, we also see that the number of walks of length 2 in $\Gamma(\infty)$ is determined by the spectrum of Γ. This implies these numbers are the same as in a local graph of the s-clique extension of $T(n)$.

Let Δ be the s-clique extension of $T(n)$. Fix a vertex u of Δ. Then there are $s - 1$ vertices with valency $(s - 2) + 2s(n - 2)$ and $2s(n - 2)$ vertices with valency $s(n - 2) + 2(s - 1)$ in the local graph of $T(n)$ with respect to a fixed vertex. Using (2.5), this implies that the sum of valencies and the sum of square of valencies of vertices in $\Gamma(\infty)$ are constant, and are given by the following equations.

\[(3.1) \sum_{i=1}^{k} d_i = 2\varepsilon = 2s^2n^2 - 2s^2n - 6sn - 3s^2 + 9s + 2,\]

\[(3.2) \sum_{i=1}^{k} (d_i)^2 = 2sn(s^2n^2 - 6sn - 6s^2 + 10s + 8) + 9s^3 + 3s^2 - 24s - 4,\]

where ε is the number of edges inside $\Gamma(\infty)$. By (3.1) and (3.2), we obtain

\[(3.3) \sum_{i=1}^{k} (d_i - (sn - 2))^2 = (s - 1)s^2(n - 3)^2.\]

It turns out that (3.3) is of crucial importance in proving our main result. Now we show the following lemma that will be used later.

Lemma 8. Fix a vertex ∞ of Γ and let $\Gamma(\infty)$ be the local graph of Γ at ∞. Define $E = \{y \sim \infty \mid d_y > \frac{3}{4}s(n-1)\}$ and let $e = |E|$. Let $F = \{y \sim \infty \mid d_y \leq \frac{3}{4}s(n-1)\}$ and $f = |F|$. If $n \geq 55$, then the following hold.

1. $f \leq 16(s - 1)$.
2. The subgraph of Γ induced on E is not complete.
3. The subgraph of Γ induced on E does not contain a coclique of order three.

Proof. Note that $f = k - e$. As $\frac{3}{4}s(n-1) + 1 \leq \frac{3}{4}(sn - 2)$, by (3.3), we obtain

\[(s - 1)s^2(n - 3)^2 = \sum_{y \sim \infty} (d_y - (sn - 2))^2 \geq \sum_{y \in F} (d_y - (sn - 2))^2 \geq \sum_{y \in F} \left(\frac{1}{4}(sn - 2)\right)^2 = \frac{1}{16} f(sn - 2)^2 \geq \frac{1}{16} f(sn - s)^2.

So

\[f \leq 16(s - 1),\]
which implies \(f < \frac{1}{2}(sn - 2) \) if \(n \geq 55 \) (and \(s \geq 2 \)). This means
\[
e = k - f > sn.
\]
By Lemma 7, we obtain that \(e \) is greater than the order of a maximum size clique and hence the subgraph induced on \(E \) is not complete.

Now we show that \(E \) does not contain a coclique of order three. Suppose \(X \subset E \) is a coclique in \(\Gamma(\infty) \) with vertices \(\{x_1, x_2, x_3\} \). Define \(A_i \) (\(i = 1, 2, 3 \)) such that
\[
A_i = \{y \sim \infty \mid y \sim x_i, y \sim x_j \text{ for all } x_j \in X, j \neq i\} \cup \{x_i\}.
\]
Since \(\Gamma \) is co-edge-regular, the vertices \(x_i \) and \(x_j \) (\(i \neq j \)) have at most \(4s - 1 \) common neighbours. By the inclusion-exclusion principle, we have
\[
3 \times \left(\frac{3}{4}s(n - 1) + 1\right) - k \leq 4s - 1.
\]
This gives \(n < 54 \). This shows the lemma.

A maximal clique of \(\Gamma \) is called a line if it contains more than \(\frac{3}{4}s(n - 1) \) vertices. We show the existence of lines of \(\Gamma \) in the following.

Proposition 9. If \(n \geq 48s \geq 96 \), then for every vertex \(\infty \), there are exactly two lines through \(\infty \), say \(C_1 \) and \(C_2 \). Denote \(m = |V(C_1) \cap V(C_2) \setminus \{\infty\}| \) and \(\ell = k + 1 - |V(C_1) \cup V(C_2)| \). Then \(m \leq 4s - 1 \) and \(\ell \leq 16(s - 1) \).

Proof. Fix a vertex \(\infty \) of \(\Gamma \), let \(E = \{y \sim \infty \mid d_y > \frac{3}{4}s(n - 1)\} \). By Lemma 8, a maximum coclique in \(E \) has order two as \(n \geq 48s \geq 55 \). Let \(x_1, x_2 \) be distinct nonadjacent vertices in \(E \) and let \(y \in E \). Then \(y \) has at least one neighbour in \(\{x_1, x_2\} \).

Let \(A_i = \{y \in E \mid y \sim x_i, y \sim x_j \text{ for } j = 1, 2, j \neq i\} \) for \(i = 1, 2 \). Then the subgraph induced on \(A_i \) is complete for \(i = 1, 2 \). Let \(C_i \) be a maximal clique containing the vertex set \(\{\infty\} \cup A_i \) for \(i = 1, 2 \). Note that \(C_1 \neq C_2 \) as \(x_1 \sim x_2 \).

Let \(M = V(C_1) \cap V(C_2) \setminus \{\infty\} \) and \(L = V(\Gamma(\infty)) \setminus (V(C_1) \cup V(C_2)) \). Let \(m = |M| \) and \(\ell = |L| \). By the co-edge-regularity of \(\Gamma \), we have \(m \leq 4s - 1 \). Let \(F = \{y \sim \infty \mid d_y \leq \frac{3}{4}s(n - 1)\} \) and \(f = |F| \). We have, by Lemma 8, that \(f \leq 16(s - 1) \).

Suppose \(x \in E \setminus (V(C_1) \cup V(C_2)) \). Then \(x \) has at least \((\frac{3}{4}s(n - 1) - (4s - 2) - 16(s - 1))/2 \) neighbours in at least one of \(C_1 \) and \(C_2 \). If \(n \geq 48s \geq 96 \), then this number is at least \(4s \), which is a contradiction. Hence \(E \subseteq V(C_1) \cup V(C_2) \).

So, \(L \subseteq F \) and hence \(\ell \leq f \leq 16(s - 1) \) by Lemma 8. This shows that \(|V(C_1)| + |V(C_2)| \geq k - \ell \geq k - 16(s - 1) \). Assume \(|V(C_1)| \geq |V(C_2)| \), then we see that
\[
|V(C_2)| \geq k - 16(s - 1) - s(n - 1) > \frac{3}{4}s(n - 1),
\]
as \(n \geq 48s \geq 96 \). This gives that there are exactly two lines through \(\infty \).
Now we prove the following property for lines through a vertex.

Lemma 10. Fix a vertex ∞ of Γ and let C_1 and C_2 be the two lines through ∞ with respective orders c_1 and c_2. Let $L = V(\Gamma(\infty)) \setminus (V(C_1) \cup V(C_2))$ and $M = V(C_1) \cap V(C_2) \setminus \{\infty\}$, and $\ell = |L|$, $m = |M| \geq 0$. If $n \geq 48s \geq 96$, then $\ell + m = s - 1$ and

$$s(n - 3) + 1 \leq c_i \leq s(n - 1)$$

for $i = 1, 2$.

Proof. Let $Q = V(C_1) \Delta V(C_2)$, where Δ means “symmetric difference”. Then, by Lemma 7, $|Q| \leq |V(C_1)| + |V(C_2)| \leq 2s(n - 1)$.

Note that Q is the complement of $L \cup M$ inside $V(\Gamma(\infty))$.

For $y \in M$, we have

$$2sn - 19s \leq k - 1 - \ell \leq dy \leq k - 1 = 2sn - 3s - 2,$$

by Proposition 9.

Now let $y \in L$. Then y has at least $4s - 1$ neighbors in each of C_1 and C_2.

Hence, by Proposition 9, we obtain

$$dy \leq 2 \times (4s - 1) + \ell - 1 \leq 2(4s - 1) + 16(s - 1) - 1 \leq 24s.$$

By (3.3), we obtain

$$s(n - 3)\sum_{y \sim \infty} (dy - (sn - 2))^2$$

$$\geq \sum_{y \in L} (dy - (sn - 2))^2 + \sum_{y \in M} (dy - (sn - 2))^2$$

$$\geq \ell((sn - s) - 24s)^2 + m((2sn - 19s) - sn)^2$$

$$= \ell s^2(n - 25)^2 + ms^2(n - 19)^2 \geq (\ell + m)s^2(n - 25)^2.$$

So

$$\ell + m \leq \frac{(s - 1)(n - 3)^2}{(n - 25)^2} < s$$

if $n \geq 48s$. Hence

$$\ell + m \leq s - 1.$$

This gives for $y \in L \cup M$, using (3.5), (3.6) and $l \leq s - 1$, that

$$dy - (sn - 2) \leq k - 1 - (sn - 2) = sn - 3s.$$
Note that by (3.8),
\begin{align*}
 s(n-1) & \geq |V(C_j)| \geq 1 + k - s(n-1) - l \\
 & \geq 2sn - 3s - s(n-1) - (s-1) = s(n-3) + 1
\end{align*}
for \(j = 1, 2\).

For \(y \in V(\Gamma(\infty)) \setminus (L \cup M)\), we obtain
\[sn - 4s \leq |V(C_2)| - m - 2 \leq d_y \leq |V(C_2)| - 1 + 4s - 1 + \ell \leq sn + 4s - 3.\]
Hence \(|d_y - (sn - 2)| \leq 4s\).

Now (3.3) gives us
\begin{align*}
 (s-1)s^2(n-3)^2 &= \sum_{y \sim \infty} (d_y - (sn - 2))^2 \\
 &\leq \sum_{y \in L \cup M} (d_y - (sn - 2))^2 + \sum_{y \in Q} (d_y - (sn - 2))^2 \\
 &\leq (\ell + m)s^2n^2 + 2s(n-1)(4s)^2.
\end{align*}
So
\[\ell + m \geq \frac{(s-1)(n-3)^2 - 32s(n-1)}{n^2} > s - 2,\]
if \(n \geq 48s \geq 96\). This implies \(\ell + m = s - 1\). This shows the lemma. \(\blacksquare\)

We obtain the following lemma immediately.

Lemma 11. Fix a vertex \(\infty\) of \(\Gamma\) and let \(C_1\) and \(C_2\) be the two lines through \(\infty\) with respective orders \(c_1\) and \(c_2\). Assume \(m = |V(C_1) \cap V(C_2) \setminus \{\infty\}|\). If \(n \geq 48s\), then \(c_1 + c_2 = 2s(n-2) + 2(m+1)\).

Proof. Let \(\ell = |V(\Gamma(\infty)) \setminus (V(C_1) \cup V(C_2))|\). Then we have
\[(c_1 - m - 1) + (c_2 - m - 1) + m + \ell = k = 2sn - 3s - 1.\]
If \(n \geq 48s\), then we have \(\ell + m = s - 1\) by Lemma 10, hence \(c_1 + c_2 = 2s(n - 2) + 2(m + 1)\). \(\blacksquare\)

In the next two sections, we will follow the method as used in Hayat et al. [4].

4. The Order of Lines

In this section, we will show the following lemma on the order of lines.
Lemma 12. Let $s \geq 2$ and $n \geq 1$ be integers. Let Γ be a co-edge-regular graph that is cospectral with the s-clique extension of the triangular graph $T(n)$. Let q_i be the number of lines with order $s(n - 3) + i$ for $i = 1, \ldots, 2s$ and $\delta = \sum_{i=1}^{2s} q_i$ be the number of lines in Γ. Assume $n \geq 48s$. Then

\begin{equation}
\sum_{i=1}^{2s} (s(n - 3) + i)q_i = sn(n - 1)
\end{equation}

holds, and the number δ satisfies

\begin{equation}
\frac{s}{n - 3}n \leq \delta \leq n + 2.
\end{equation}

If $\delta = n$, then $q_i = 0$ for all $i < 2s$, and $q_{2s} = n$.

Proof. Assume $n \geq 48s$. By Proposition 9, any vertex of Γ lies on exactly two lines. Now consider the set

$$W = \{(x, C) \mid x \in V(C), \text{ where } C \text{ is a line}\}.$$

Then, by double counting, the cardinality of the set W, we see (4.1). Moreover, we see that

$$\delta = \sum_{i=1}^{2s} q_i < \sum_{i=1}^{2s} \frac{s(n - 3) + i}{s(n - 3)}q_i = n + 2 + \frac{6}{n - 3}.$$

Thus, if $n > 10$, we obtain

$$\delta \leq n + 2.$$

On the other hand, we have

$$\delta = \sum_{i=1}^{2s} q_i \geq \sum_{i=1}^{2s} \frac{s(n - 3) + i}{s(n - 1)}q_i = n.$$

This shows $\delta \geq n$, and $\delta = n$ implies that all lines have order $s(n - 1)$, which means $q_i \neq 0$ if and only if $i = 2s$. This completes the proof.

5. The Neighborhood of a Line

In this section we will show the following proposition.

Proposition 13. Let Γ be a co-edge-regular graph that is cospectral with the s-clique extension of the triangular graph $T(n)$, where $s \geq 2, n \geq 1$ are integers. If $n \geq 48s$, then Γ contains exactly n lines.
Proof. In Lemma 12, we have seen that the number δ of lines satisfies $n \leq \delta \leq n + 2$. Now we assume that $n + 1 \leq \delta \leq n + 2$, in order to obtain a contradiction. Let q_i be the number of lines of order $s(n - 3) + i$ in Γ, where $i = 1, \ldots, 2s$. Let h be minimal such that $q_h \neq 0$. Then clearly, $1 \leq h \leq 2s$. Fix a line C with exactly $s(n - 3) + h$ vertices. Let q'_i be the number of lines C' with $s(n - 3) + i$ vertices that intersect C in at least one vertex. So $q_i \geq q'_i$. By Lemma 11, we obtain

\begin{equation}
|V(C) \cap V(C')| = \frac{h + i - 2s}{2}.
\end{equation}

By Proposition 9, every vertex lies on exactly two lines, and hence we obtain

\begin{equation}
\sum_{i=1}^{2s} q_i \left(\frac{h + i - 2s}{2} \right) \geq \sum_{i=1}^{2s} q'_i \left(\frac{h + i - 2s}{2} \right) = s(n - 3) + h.
\end{equation}

Now multiply (5.2) by 2 and subtract (4.1) from obtained equation, we find

\begin{equation}
\delta(h + s(1 - n)) = \sum_{i=1}^{2s} q_i(h + s(1 - n)) \geq s(-n^2 + 3n - 6) + 2h
\end{equation}
as $\delta = \sum_{i=1}^{2s} q_i$. This gives

\begin{equation}
h(\delta - 2) \geq 2s(n - 3) + (\delta - n)s(n - 1).
\end{equation}

As $n + 1 \leq \delta \leq n + 2$, we see

\begin{equation}
hn \geq h(\delta - 2) \geq 2s(n - 3) + (\delta - n)s(n - 1) \geq 2s(n - 3) + s(n - 1) = 3sn - 7s.
\end{equation}

Since $n \geq 48s$, (5.4) implies that $h \geq 3s$. This contradicts to $h \leq 2s$. This completes the proof.

6. Proof of the Main Result

In this section we show our main result, Theorem 1.

Proof of Theorem 1. Assume $n \geq 48s$. By Propositions 9 and 13 and Lemma 12, we find that there are exactly n lines, each of order $s(n - 1)$, and every vertex x in Γ lies on exactly two lines. Moreover, by Lemma 11, the two lines through any vertex x have exactly s vertices in common, and every neighbor of x lies in one of the two lines through x. Now consider the following equivalence relation R on the vertex set $V(\Gamma)$: xRx' if and only if $\{x\} \cup N_\Gamma(x) = \{x'\} \cup N_\Gamma(x')$, where $x, x' \in V(\Gamma)$.
Every equivalence class under R contains s vertices and it is the intersection of two lines. Let us define the graph $\hat{\Gamma}$ whose vertices are the equivalent classes and two classes, say S_1 and S_2, are adjacent in $\hat{\Gamma}$ if and only if any vertex in S_1 is adjacent to any vertex in S_2. Then $\hat{\Gamma}$ is a regular graph with valency $2n - 4$, and Γ is the s-clique extension of $\hat{\Gamma}$. Note that the spectrum of $\hat{\Gamma}$ is equal to

$$\left\{(2n - 4)^1, (n - 4)^{n-1}, (-2)^{\frac{n^2-3n}{2}}\right\},$$

by the relation of the spectra of Γ and $\hat{\Gamma}$, see (2.1) and (2.2). Since $\hat{\Gamma}$ is a connected regular graph with valency $2n - 4$, and it has exactly three distinct eigenvalues, it follows that $\hat{\Gamma}$ is a strongly regular graph with parameters \((\binom{n}{2}, 2n - 4, n - 2, 4)\).

As proved in [3], the triangular graphs are determined by the spectrum except when $n = 8$. Since we assume that n is large enough, the graph $\hat{\Gamma}$ is the triangular graph $T(n)$. This completes the proof.

Acknowledgements

Jack Koolen is partially supported by the National Natural Science Foundation of China (No. 11471009 and No. 11671376) and Anhui Initiative in Quantum Information Technologies (No. AHY150000). Ying-Ying Tan is supported by the National Natural Science Foundation of China (No. 11801007) and Natural Science Foundation of Anhui Province (No. 1808085MA17) and Doctoral Start-up foundation of Anhui Jianzhu University (No. 2018QD22). Zheng-jiang Xia is supported by the University Natural Science Research Project of Anhui Province (No. KJ2018A0438).

References

 doi:10.1080/00029890.1963.11990038

 https://arxiv.org/abs/1904.01274v1

 https://icu-hsuzuki.github.io/lecturenote/

 doi:10.1016/0024-3795(94)00346-F

 http://arxiv.org/abs/1809.01888v1

Received 7 May 2019
Revised 8 August 2019
Accepted 9 August 2019