A SHORT PROOF FOR A LOWER BOUND ON THE ZERO FORCING NUMBER

Maximilian F"urst

and

Dieter Rautenbach

Institute of Optimization and Operations Research
Ulm University, Germany

e-mail: maximilian.fuerst@uni-ulm.de
dieter.rautenbach@uni-ulm.de

Abstract

We provide a short proof of a conjecture of Davila and Kenter concerning a lower bound on the zero forcing number \(Z(G) \) of a graph \(G \). More specifically, we show that \(Z(G) \geq (g - 2)(\delta - 2) + 2 \) for every graph \(G \) of girth \(g \) at least 3 and minimum degree \(\delta \) at least 2.

Keywords: zero forcing, girth, Moore bound.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

We consider finite, simple, and undirected graphs and use standard terminology. For an integer \(n \), let \([n]\) denote the set of positive integers at most \(n \). For a graph \(G \), a set \(Z \) of vertices of \(G \) is a zero forcing set of \(G \) if the elements of \(V(G) \setminus Z \) have a linear order \(u_1, \ldots, u_k \) such that, for every \(i \) in \([k]\), there is some vertex \(v_i \) in \(Z \cup \{ u_j : j \in [i-1] \} \) such that \(u_i \) is the only neighbor of \(v_i \) outside of \(Z \cup \{ u_j : j \in [i-1] \} \); in particular, \(N_G[v_i] \setminus (Z \cup N_G[v_i] \cup \cdots \cup N_G[v_{i-1}]) = \{ u_i \} \) for \(i \in [k] \). The zero forcing number \(Z(G) \) of \(G \), defined as the minimum order of a zero forcing set of \(G \), was proposed by the AIM Minimum Rank - Special Graphs Work Group [1] as an upper bound on the nullity of matrices associated with a given graph. The same parameter was also considered in connection with quantum physics [5, 7, 14] and logic circuits [6].
In [11] Davila and Kenter conjectured that

\[Z(G) \geq (g - 2)(\delta - 2) + 2 \]

for every graph \(G \) of girth \(g \) at least 3 and minimum degree \(\delta \) at least 2. They observe that, for \(g > 6 \) and sufficiently large \(\delta \) in terms of \(g \), the conjectured bound follows by combining results from [3] and [8]. For \(g \leq 6 \), it was shown in [12, 13], Davila and Henning [9] showed it for \(7 \leq g \leq 10 \), and, eventually, Davila, Kalinowski, and Stephen [10] completed the proof. The proof in [10] is rather short itself but relies on [12, 13, 9]. While the cases \(g \leq 6 \) have rather short proofs, the proof in [9] for \(7 \leq g \leq 10 \) extends over more than eleven pages and requires a detailed case analysis. Therefore, the complete proof of (1) obtained by combining [9, 10, 12, 13] is rather long.

In the present note we propose a considerably shorter and simpler proof. Our approach only requires a special treatment for the triangle-free case \(g = 4 \) [12], involves a new lower bound on the zero forcing number, and an application of the Moore bound [2].

2. Proof of (1)

Our first result is a natural generalization of the well known fact \(Z(G) \geq \delta(G) \) [4], where \(\delta(G) \) is the minimum degree of a graph \(G \). For a set \(X \) of vertices of a graph \(G \) of order \(n \), let \(N_G(X) = \bigcup_{u \in X} N_G(u) \setminus X \), \(N_G[X] = X \cup N_G(X) \), and \(\delta_p(G) = \min \{|N_G(X)| : X \subseteq V(G) \text{ and } |X| = p\} \) for \(p \in [n] \). Note that \(\delta_1(G) \) equals \(\delta(G) \).

Lemma 1. If \(G \) is a graph of order \(n \), then \(Z(G) \geq \delta_p(G) \) for every \(p \in [n] \).

Proof. Let \(Z \) be a zero forcing set of minimum order. Let \(u_1, \ldots, u_k \) and \(v_1, \ldots, v_k \) be as in the introduction. Since, by definition, \(\delta_p(G) \leq n - p \), the result is trivial for \(p \geq k = n - |Z| \), and we may assume that \(p < k \). As noted above, we have \(N_G[v_i] \setminus (Z \cup N_G[v_1] \cup \cdots \cup N_G[v_{i-1}]) = \{u_i\} \) for \(i \in [k] \), which implies that \(X = \{v_1, \ldots, v_p\} \) is a set of \(p \) distinct vertices of \(G \). Furthermore, it implies that \(|N_G[X]| \leq |Z| + p \), and, hence, \(\delta_p(G) \leq |N_G(X)| = |N_G[X]| - p \leq |Z| \) as required.

For later reference, we recall the Moore bound for irregular graphs.

Theorem 2 (Alon, Hoory and Linial [2]). If \(G \) is a graph of order \(n \), girth at least \(2r \) for some integer \(r \), and average degree \(d \) at least 2, then \(n \geq 2 \sum_{i=0}^{r-1} (d-1)^i \).

We also need the following numerical fact.
Lemma 3. For positive integers \(p \) and \(q \) with \(p \geq 5 \) and \(2p - 1 \leq q \leq \binom{p}{2} \),
\[
1 + \frac{2(q-p)}{q+p} \geq q - p + 1.
\]

Proof. For \(p \geq 17 \), it follows from \(q \geq 2p - 1 \) that \(1 + \frac{2(q-p)}{q+p} \geq 1.64 \), and, since \(1.64[\frac{p}{2}] + 1 > \binom{p}{2} - p + 1 \), the desired inequality follows for these values of \(p \). For the finitely many pairs \((p,q) \) with \(5 \leq p \leq 16 \) and \(2p - 1 \leq q \leq \binom{p}{2} \), we verified it using a computer.

We proceed to the proof of (1).

Theorem 4. If \(G \) is a graph of girth \(g \) at least 3 and minimum degree \(\delta \) at least 2, then \(Z(G) \geq (g-2)(\delta-2) + 2 \).

Proof. For \(g = 3 \), the inequality simplifies to the known fact \(Z(G) \geq \delta(G) \), and, for \(g = 4 \), it has been shown in [12]. Now, let \(g \geq 5 \). Let \(G \) be a set of \(g - 2 \) vertices of \(G \) with \(|N_G(X)| = \delta_{g-2}(G) \), and, let \(N = N_G(X) \). By the girth condition, the components of \(G[X] \) are trees, and no vertex in \(N \) has more than one neighbor in any component of \(G[X] \).

Let \(K_1, \ldots, K_p \) be the vertex sets of the components of \(G[X] \).

If \(p \geq 3 \) and there are two vertices in \(N \) that both have neighbors in the same two distinct components of \(G[X] \), then \(G \) contains a cycle of order at most \(2 + |K_i| + |K_j| \leq 2 + (g-2) - (p-2) < g \) which is a contradiction. Thus, \(0 \leq |N_G(K_i) \cap N_G(K_j)| \leq 1 \) for \(1 \leq i < j \leq n \). Similarly, if \(p = 2 \), and there are three vertices \(u, v, \) and \(w \) in \(N \) that all three have neighbors in \(K_1 \) and \(K_2 \), then let \(u_1, v_1, \) and \(w_1 \) denote the corresponding neighbors in \(K_i \) for \(i \in \{1,2\} \), respectively. If any of \(u_1, v_1, \) and \(w_1 \) are distinct, then \(G[K_1] \) contains a path between two of the vertices \(u_1, v_1, \) and \(w_1 \) avoiding the third, and \(G \) contains a cycle of order at most \(2 + (|K_1| - 1) + |K_2| = g - 1 \), which is a contradiction. By symmetry, this implies \(u_1 = v_1 = w_1 \) and \(u_2 = v_2 = w_2 \), and \(G \) contains the cycle \(u_1u_2v_1u_1 \) of order 4, which is a contradiction. Thus, \(0 \leq |N_G(K_1) \cap N_G(K_2)| \leq 2 \).

Combining these observations, we obtain
\[
(2) \quad \sum_{1 \leq i < j \leq p} |N_G(K_i) \cap N_G(K_j)| \leq \begin{cases} \binom{p}{2}, & \text{for } p \geq 3, \text{ and} \\ 2p - 2, & \text{for } p \in \{1,2\}. \end{cases}
\]

Let the bipartite graph \(H \) arise from \(G[X \cup N] \) by contracting the component \(K_i \) of \(G[X] \) to a single vertex \(u_i \) for every \(i \in [p] \), and removing all edges of \(G[N] \). Note that \(\sum_{i \in [p]} d_H(u_i) - \sum_{v \in N} d_H(v) = 0 \) in the bipartite graph \(H \) with partite sets \(\{u_1, \ldots, u_p\} \) and \(N \). By the girth condition, no vertex in \(N \) has two neighbors in \(K_i \), and \(K_i \) induces a tree, which implies \(d_H(u_i) = \sum_{v \in K_i} d_G(v) - 2(|K_i| - 1) \geq 0 \).
\[\delta(K_i) - 2(|K_i| - 1) \] for every \(i \in [p] \). Let \(q = \sum_{v \in N}(d_H(v) - 1) \). Now, Lemma 1 implies

\[
Z(G) \geq \delta_{g-2}(G) = |N| = \sum_{v \in N} 1 + \left(\sum_{i \in [p]} d_H(u_i) - \sum_{v \in N} d_H(v) \right) \\
= \sum_{i \in [p]} d_H(u_i) - q \geq \sum_{i=1}^{p} \left(\delta|K_i| - 2(|K_i| - 1) \right) - q \\
= (g - 2)(\delta - 2) + 2 + ((2p - 2) - q).
\]

If \(q \leq 2p - 2 \), then this implies (1). Hence, we may assume \(q \geq 2p - 1 \).

Note that

\[
2p - 1 \leq q = \sum_{v \in N}(d_H(v) - 1) \leq \sum_{v \in N} \left(\frac{d_H(v)}{2} \right) = \sum_{1 \leq i < j \leq p} |N_G(K_i) \cap N_G(K_j)|,
\]

where the last equality follows, because every vertex \(v \) in \(N \) contributes exactly \(\left(\frac{d_H(v)}{2} \right) \) to the right hand side. Now, (2) implies \(p \geq 5 \).

Let \(H' \) arise by removing all vertices of degree 1 from \(H \). Since, for every \(i \in [p] \), we have \(d_H(u_i) \geq \delta|K_i| - 2(|K_i| - 1) \geq 2 \), the graph \(H' \) contains all \(p \) vertices \(u_1, \ldots, u_p \). Let \(H' \) contain \(r \) vertices of \(N \). Since \(H' \) has order \(p + r \) and size

\[
\sum_{v \in N \cap V(H')} d_H(v) = r + \sum_{v \in N} (d_H(v) - 1) = r + q,
\]

its average degree is at least \(\frac{2(r+q)}{p+r} \), which is at least 2, because \(q \geq 2p - 1 \geq 2 \).

If \(H' \) contains a cycle of order \(2\ell \), then \(G \) contains a cycle that alternates between \(X \) and \(N \), contains \(\ell \) vertices from \(N \), and avoids \(p - \ell \) of the components of \(G[X] \), which implies that this cycle has order at most \(\ell + (|X| - (p - \ell)) = \ell + (g - 2) - (p - \ell) \). By the girth condition, this implies that the bipartite graph \(H' \) has girth at least \(\ell + 2 \), if \(p \) is even, and \(p + 3 \), if \(p \) is odd.

Using Theorem 2 and \(q \geq r \), we obtain

\[
p + r \geq 2 \sum_{i=0}^{\left\lceil \frac{q}{2} \right\rceil} \left(\frac{2(r + q)}{p + r} - 1 \right)^i = \frac{2(p + r)}{2(q - p)} \left(1 + \frac{2(q - p)}{p + r} \right) \left(\left\lceil \frac{q}{2} \right\rceil + 1 \right) - 1 \\
\geq \frac{2p + r}{2(q - p)} \left(1 + \frac{2(q - p)}{p + q} \right) \left(\left\lceil \frac{q}{2} \right\rceil + 1 \right) - 1,
\]

which implies \(\left(1 + \frac{2(q - p)}{q + p} \right) \left(\left\lceil \frac{q}{2} \right\rceil + 1 \right) \leq q - p + 1 \). Since \(q \geq 2p - 1 \), and, by (2), \(q \leq \left(\frac{p}{2} \right) \), this contradicts Lemma 3, which completes the proof.
\[\blacksquare \]
References

Received 31 May 2017
Revised 26 February 2018
Accepted 26 February 2018