NEIGHBOR SUM DISTINGUISHING TOTAL
CHOOSABILITY OF IC-PLANAR GRAPHS

WEN-YAO SONG, LIAN-YING MIAO

School of Mathematics
China University of Mining and Technology
Xuzhou 221116, P.R. China

e-mail: songwenyao@cumt.edu.cn
miaolianying@cumt.edu.cn

AND

YUAN-YUAN DUAN

School of Mathematics and Statistics
Zaozhuang University
Zaozhuang 277160, P.R. China

e-mail: duanyy0827@sina.com

Abstract

Two distinct crossings are independent if the end-vertices of the crossed pair of edges are mutually different. If a graph G has a drawing in the plane such that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. A proper total-k-coloring of a graph G is a mapping \(c : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, k\} \) such that any two adjacent elements in \(V(G) \cup E(G) \) receive different colors. Let \(\sum_c(v) \) denote the sum of the color of a vertex v and the colors of all incident edges of v. A total-k-neighbor sum distinguishing-coloring of G is a total-k-coloring of G such that for each edge uv \(\in E(G) \), \(\sum_c(u) \neq \sum_c(v) \). The least number k needed for such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by \(\chi''_\Sigma(G) \). In this paper, it is proved that if G is an IC-planar graph with maximum degree \(\Delta(G) \), then \(\chi''_\Sigma(G) \leq \max\{\Delta(G) + 3, 17\} \), where \(\chi''_\Sigma(G) \) is the neighbor sum distinguishing total choosability of G.

Keywords: neighbor sum distinguishing total choosability, maximum degree, IC-planar graph, Combinatorial Nullstellensatz.

2010 Mathematics Subject Classification: 05C15.
References

Received 30 June 2017
Revised 21 March 2018
Accepted 21 March 2018