AN IMPROVED UPPER BOUND ON NEIGHBOR EXPANDED SUM DISTINGUISHING INDEX

BOJAN VUČKOVIĆ
Mathematical Institute, Serbian Academy of Science and Arts, Kneza Mihaila 36 (P.O. Box 367), 11001 Belgrade, Serbia
e-mail: b.vuckovic@turing.mi.sanu.ac.rs

Abstract
A total k-weighting f of a graph G is an assignment of integers from the set $\{1, \ldots, k\}$ to the vertices and edges of G. We say that f is neighbor expanded sum distinguishing, or NESD for short, if $\sum_{w \in N(v)} (f(vw) + f(w))$ differs from $\sum_{w \in N(u)} (f(uw) + f(w))$ for every two adjacent vertices v and u of G. The neighbor expanded sum distinguishing index of G, denoted by $\text{egndi}^{\Sigma}(G)$, is the minimum positive integer k for which there exists an NESD weighting of G. An NESD weighting was introduced and investigated by Flandrin et al. (2017), where they conjectured that $\text{egndi}^{\Sigma}(G) \leq 2$ for any graph G. They examined some special classes of graphs, while proving that $\text{egndi}^{\Sigma}(G) \leq \chi(G) + 1$. We improve this bound and show that $\text{egndi}^{\Sigma}(G) \leq 3$ for any graph G. We also show that the conjecture holds for all bipartite, 3-regular and 4-regular graphs.

Keywords: general edge coloring, total coloring, neighbor sum distinguishing index.

2010 Mathematics Subject Classification: 05C15.

References

Received 16 February 2017
Revised 19 March 2018
Accepted 19 March 2018