LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS

WEIHUA LU

College of Arts and Sciences
Shanghai Maritime University,
Shanghai, 201306, P.R. China

e-mail: lwh8797@163.com

CHAO YANG

School of Mathematics, Physics and Statistics
Shanghai University of Engineering Science,
Shanghai, 201620, P.R. China

e-mail: yangchaomath0524@163.com

AND

HAN REN

Department of Mathematics
East China Normal University,
Shanghai, 200241, P.R. China
Shanghai Key Laboratory of PMMP
Shanghai, 200241, P.R. China

e-mail: hren@math.ecnu.edu.cn

Abstract

In this paper, we investigate the number of Hamiltonian cycles of a generalized Petersen graph \(P(N,k) \) and prove that

\[\Psi(P(N,3)) \geq N \cdot \alpha_N, \]

where \(\Psi(P(N,3)) \) is the number of Hamiltonian cycles of \(P(N,3) \) and \(\alpha_N \) satisfies that for any \(\epsilon > 0 \), there exists a positive integer \(M \) such that when \(N > M \),

\[\left(1 - \epsilon \right) \frac{(1 - r^3)}{6r^3 + 5r^2 + 3} \left(\frac{1}{r} \right)^{N+2} < \alpha_N < \left(1 + \epsilon \right) \frac{(1 - r^3)}{6r^3 + 5r^2 + 3} \left(\frac{1}{r} \right)^{N+2}, \]

\(^1 \text{The corresponding author.} \)
where \(\frac{1}{r} = \max \left\{ \left| \frac{1}{r_j} \right| : j = 1, 2, \ldots, 6 \right\} \) and each \(r_j \) is a root of equation \(x^6 + x^5 + x^3 - 1 = 0 \), \(r \approx 0.782 \). This shows that \(\Psi(P(N, 3)) \) is exponential in \(N \) and also deduces that the number of 1-factors of \(P(N, 3) \) is exponential in \(N \).

Keywords: generalized Petersen graph, Hamiltonian cycle, partition number, 1-factor.

2010 Mathematics Subject Classification: 05C30, 05C45, 05C70.

References

Received 11 April 2017
Revised 17 March 2018
Accepted 19 March 2018