LONGER CYCLES IN ESSENTIALLY 4-CONNECTED PLANAR GRAPHS

IGOR FABRICI1,2,a, JOCHEN HARANT1,b
SAMUEL MOHR1,3,b AND JENS M. SCHMIDT1,3,b

a Pavol Jozef Šafárik University
Institute of Mathematics, Košice, Slovakia
b Ilmenau University of Technology
Department of Mathematics, Ilmenau, Germany

e-mail: igor.fabrici@upjs.sk
jochen.harant@tu-ilmenau.de
samuel.mohr@tu-ilmenau.de
jens.schmidt@tu-ilmenau.de

Abstract

A planar 3-connected graph G is called essentially 4-connected if, for every 3-separator S, at least one of the two components of $G - S$ is an isolated vertex. Jackson and Wormald proved that the length $\text{circ}(G)$ of a longest cycle of any essentially 4-connected planar graph G on n vertices is at least $\frac{2n+4}{5}$ and Fabrici, Harant and Jendrol’ improved this result to $\text{circ}(G) \geq \frac{1}{2}(n + 4)$. In the present paper, we prove that an essentially 4-connected planar graph on n vertices contains a cycle of length at least $\frac{3}{5}(n + 2)$ and that such a cycle can be found in time $O(n^2)$.

Keywords: essentially 4-connected planar graph, longest cycle, circumference, shortness coefficient.

2010 Mathematics Subject Classification: 05C38, 05C10.

REFERENCES

1Partially supported by DAAD, Germany (as part of BMBF) and by the Ministry of Education, Science, Research and Sport of the Slovak Republic within the project 57320575.
2Partially supported by Science and Technology Assistance Agency under the contract No. APVV-15-0116 and by the Slovak VEGA Grant 1/0368/16.
3Geförderd durch die Deutsche Forschungsgemeinschaft (DFG) – 327533333 und 270450205; partially supported by the grants 327533333 and SCHM 3186/1-1 (270450205) from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), respectively.

Received 16 October 2017
Revised 13 March 2018
Accepted 13 March 2018