THE SLATER AND SUB-k-DOMINATION NUMBER OF A GRAPH WITH APPLICATIONS TO DOMINATION AND k-DOMINATION

DAVID AMOS

Texas A&M University
e-mail: dave.amos@live.com

JOHN ASPLUND

Dalton State College
e-mail: jasplund@daltonstate.edu

BORIS BRIMKOV

Rice University
e-mail: boris.brimkov@rice.edu

AND

RANDY DAVILA

University of Johannesburg
University of Houston-Downtown
e-mail: davilar@uhd.edu

Abstract

In this paper we introduce and study a new graph invariant derived from the degree sequence of a graph G, called the sub-k-domination number and denoted $\text{sub}_k(G)$. This invariant serves as a generalization of the Slater number; in particular, we show that $\text{sub}_k(G)$ is a computationally efficient sharp lower bound on the k-domination number of G, and improves on several known lower bounds. We also characterize the sub-k-domination numbers of several families of graphs, provide structural results on sub-k-domination, and explore properties of graphs which are $\text{sub}_k(G)$-critical with respect to addition and deletion of vertices and edges.

Keywords: Slater number, domination number, sub-k-domination number, k-domination number, degree sequence index strategy.

2010 Mathematics Subject Classification: 05C69.
References

 doi:10.1007/978-1-4614-6525-6

 doi:10.7151/dmgt.1616

 doi:10.7151/dmgt.1222

 doi:10.1016/j.aml.2006.03.006

 doi:10.1016/j.laa.2007.10.024

Received 15 February 2017
Revised 5 February 2018
Accepted 28 February 2018