ON TOTAL H-IRREGULARITY STRENGTH OF THE DISJOINT UNION OF GRAPHS

FARAH A. ASHRAF
Abdus Salam School of Mathematical Sciences
GC University, Lahore, Pakistan
e-mail: faraha27@gmail.com

SUSANA CLARA LÓPEZ
Dept. Matemàtiques, Universitat Politècnica de Catalunya
C/Esteve Terrades 5, 08860 Castelldefels, Spain
e-mail: susana.clara.lopez@upc.edu

FRANCESC ANTONI MUNTANER-BATLE, AKITO OSHIMA
Graph Theory and Applications Research Group, School of Electrical Engineering
and Computer Science, Faculty of Engineering and Built Environment
The University of Newcastle, Newcastle, Australia
e-mail: fambles@yahoo.es
akitoism@yahoo.co.jp

AND

MARTIN BAČA1, ANDREA SEMANIČOVÁ-FEŇOVČÍKOVÁ
Department of Applied Mathematics and Informatics
Technical University, Košice, Slovakia
e-mail: martin.baca@tuke.sk
andrea.fenovcikova@tuke.sk

Abstract

A simple graph G admits an H-covering if every edge in $E(G)$ belongs to at least one subgraph of G isomorphic to a given graph H. For the subgraph $H \subseteq G$ under a total k-labeling we define the associated H-weight as the sum of labels of all vertices and edges belonging to H. The total k-labeling is called the H-irregular total k-labeling of a graph G admitting

1Corresponding author.
an H-covering if all subgraphs of G isomorphic to H have distinct weights. The total H-irregularity strength of a graph G is the smallest integer k such that G has an H-irregular total k-labeling.

In this paper, we estimate lower and upper bounds on the total H-irregularity strength for the disjoint union of multiple copies of a graph and the disjoint union of two non-isomorphic graphs. We also prove the sharpness of the upper bounds.

Keywords: H-covering, H-irregular labeling, total H-irregularity strength, copies of graphs, union of graphs.

2010 Mathematics Subject Classification: 05C78, 05C70.

1. Introduction

Consider a simple and finite graph G with vertex set V(G) and edge set E(G). By a labeling we mean any mapping that maps a set of graph elements to a set of numbers (usually positive integers), called labels. If the domain is V(G) ∪ E(G) then we call the labeling a total labeling. For a total k-labeling ψ : V(G) ∪ E(G) → {1, 2, . . . , k} the associated total vertex-weight of a vertex x is

wt_ψ(x) = ψ(x) + ∑_{xy ∈ E(G)} ψ(xy)

and the associated total edge-weight of an edge xy is

wt_ψ(xy) = ψ(x) + ψ(xy) + ψ(y).

A total k-labeling ψ is defined to be an edge irregular total k-labeling of the graph G if for every two different edges xy and x'y' of G there is wt_ψ(xy) ≠ wt_ψ(x'y') and to be a vertex irregular total k-labeling of G if for every two distinct vertices x and y of G there is wt_ψ(x) ≠ wt_ψ(y). This concept was given by Bača, Jendrol’, Miller and Ryan in [8].

The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength of the graph G, tes(G). Analogously, we define the total vertex irregularity strength of G, tvs(G), as the minimum k for which there exists a vertex irregular total k-labeling of G.

The following lower bound on the total edge irregularity strength of a graph G is given in [8].

\[\text{tes}(G) \geq \max \left\{ \left\lceil \frac{|E(G)| + 2}{3} \right\rceil, \left\lceil \frac{\Delta(G) + 1}{2} \right\rceil \right\}, \]

where Δ(G) is the maximum degree of G. This lower bound is tight for paths, cycles and complete bipartite graphs of the form K_{1,n}.

Ivančo and Jendrol’ [12] posed a conjecture that for an arbitrary graph G different from K_5 with maximum degree $\Delta(G)$, $\text{tes}(G) = \max \{ \lceil |E(G)| + 2 \rceil / 3, \lceil (\Delta(G) + 1) / 2 \rceil \}$. This conjecture has been verified for complete graphs and complete bipartite graphs in [13, 14], for the categorical product of two cycles and two paths in [2, 4], for generalized Petersen graphs in [11], for generalized prisms in [9], for the corona product of a path with certain graphs in [16] and for large dense graphs with $|E(G)| + 2 / 3 \leq (\Delta(G) + 1) / 2$ in [10].

The next theorem gives a lower bound for the total H-irregularity strength.

(2) \[\left\lceil \frac{|V(G)| + \delta(G)}{\Delta(G) + 1} \right\rceil \leq \text{tvs}(G) \leq |V(G)| + \Delta(G) - 2\delta(G) + 1, \]
where $\delta(G)$ is the minimum degree of G.

Przybyło in [17] proved that $\text{tvs}(G) < 32|V(G)|/\delta(G) + 8$ in general and $\text{tvs}(G) < 8|V(G)|/r + 3$ for r-regular graphs. This was then improved by Anholcer, Kalkowski and Przybyło [5] in the following way

(3) \[\text{tvs}(G) \leq 3 \left\lceil \frac{|V(G)|}{\delta(G)} \right\rceil + 1 \leq \frac{3|V(G)|}{\delta(G)} + 4. \]

Recently, Majerski and Przybyło [15] based on a random ordering of the vertices proved that if $\delta(G) \geq (|V(G)|)^{0.5} \ln |V(G)|$, then

(4) \[\text{tvs}(G) \leq \frac{(2 + o(1))|V(G)|}{\delta(G)} + 4. \]

The exact values for the total vertex irregularity strength for circulant graphs and unicyclic graphs are determined in [1, 6] and [3], respectively.

An edge-covering of G is a family of subgraphs H_1, H_2, \ldots, H_t such that each edge of $E(G)$ belongs to at least one of the subgraphs H_i, $i = 1, 2, \ldots, t$. Then it is said that G admits an (H_1, H_2, \ldots, H_t)-edge covering. If every subgraph H_i is isomorphic to a given graph H, then the graph G admits an H-covering.

Let G be a graph admitting an H-covering. For the subgraph $H \subseteq G$ under the total k-labeling ψ, we define the associated H-weight as

\[wt_\psi(H) = \sum_{v \in V(H)} \psi(v) + \sum_{e \in E(H)} \psi(e). \]

A total k-labeling ψ is called to be an H-irregular total k-labeling of the graph G if all subgraphs of G isomorphic to H have distinct weights. The total H-irregularity strength of a graph G, denoted $\text{ths}(G, H)$, is the smallest integer k such that G has an H-irregular total k-labeling. This definition was introduced by Ashraf, Bača, Lásicsáková and Semaničová-Feňovčíková [7]. If H is isomorphic to K_2, then the K_2-irregular total k-labeling is isomorphic to the edge irregular total k-labeling and thus the total K_2-irregularity strength of a graph G is equivalent to the total edge irregularity strength; that is $\text{ths}(G, K_2) = \text{tes}(G)$.

The next theorem gives a lower bound for the total H-irregularity strength.
Theorem 1 [7]. Let G be a graph admitting an H-covering given by t subgraphs isomorphic to H. Then

$$\text{ths}(G, H) \geq 1 + \left\lceil \frac{t-1}{|V(H)|+|E(H)|} \right\rceil.$$

If H is isomorphic to K_2 then from Theorem 1 the lower bound on the total edge irregularity strength given in (1) follows immediately.

The next theorem proves that the lower bound in Theorem 1 is tight.

Theorem 2 [7]. Let $r, s, 2 \leq s \leq r$, be positive integers. Then

$$\text{ths}(P_r, P_s) = \left\lceil \frac{s+r-1}{2s-1} \right\rceil.$$

In this paper, we estimate lower and upper bounds on the total H-irregularity strength for the disjoint union of multiple copies of a graph and the disjoint union of two non-isomorphic graphs. We also prove the sharpness of the upper bounds.

2. Copies of Graphs

By the symbol mG we denote the disjoint union of m copies of a graph G. Immediately from Theorem 1 we obtain a lower bound for the H-irregularity strength of m copies of a graph G.

Corollary 3. Let G be a graph admitting an H-covering given by t subgraphs isomorphic to H and let m be a positive integer. Then

$$\text{ths}(mG, H) \geq 1 + \left\lceil \frac{mt-1}{|V(H)|+|E(H)|} \right\rceil.$$

In the next theorem we give an upper bound for $\text{ths}(mG, H)$.

Theorem 4. Let G be a graph having an H-irregular total $\text{ths}(G, H)$-labeling f. Let m be a positive integer. Then

$$\text{ths}(mG, H) \leq \text{ths}(G, H) + (m - 1) \left\lceil \frac{\text{wt}_f^{\text{max}}(H) - \text{wt}_f^{\text{min}}(H) + 1}{|V(H)|+|E(H)|} \right\rceil,$$

where $\text{wt}_f^{\text{max}}(H)$ and $\text{wt}_f^{\text{min}}(H)$ are the largest and smallest weights of a subgraph H under a total $\text{ths}(G, H)$-labeling f of G.

Proof. Let G be a graph that admits an H-covering given by t subgraphs isomorphic to H. We denote these subgraphs as H^1, H^2, \ldots, H^t. Assume that f is an H-irregular total k-labeling of a graph G with $\text{ths}(G, H) = k$. The smallest
weight of a subgraph H under the total k-labeling f is denoted by the symbol $wt_f^\text{min}(H)$. Evidently

$$ wt_f^\text{min}(H) \geq |V(H)| + |E(H)|. $$

(5)

Analogously, the largest weight of a subgraph H under the total k-labeling f is denoted by the symbol $wt_f^\text{max}(H)$. It holds that

$$ wt_f^\text{max}(H) \geq wt_f^\text{min}(H) + t - 1 $$

and

$$ wt_f^\text{max}(H) \leq (|V(H)| + |E(H)|)k. $$

(7)

Thus $f : V(G) \cup E(G) \to \{1, 2, \ldots, k\}$ and

$$ \{wt_f(H^j_i) : j = 1, 2, \ldots, t\} \subset \{wt_f^\text{min}(H), wt_f^\text{min}(H) + 1, \ldots, wt_f^\text{max}(H)\}. $$

(8)

By the symbol x_i, $i = 1, 2, \ldots, m$, we denote an element (a vertex or an edge) in the ith copy of G, denoted by G_i, corresponding to the element x in G, i.e., $x \in V(G) \cup E(G)$. Analogously, let H^j_i, $i = 1, 2, \ldots, m$, $j = 1, 2, \ldots, t$, be the subgraph in the ith copy of G corresponding to the subgraph H^j in G.

Let us define the total labeling g of mG in the following way. For $i = 1, 2, \ldots, m$ let

$$ g(x_i) = f(x) + (i - 1) \left\lceil \frac{wt_f^\text{max}(H)-wt_f^\text{min}(H)+1}{|V(H)|+|E(H)|} \right\rceil. $$

Evidently, all the labels are at most

$$ k + (m - 1) \left\lceil \frac{wt_f^\text{max}(H)-wt_f^\text{min}(H)+1}{|V(H)|+|E(H)|} \right\rceil. $$

For the weight of every subgraph H^j_i, $i = 1, 2, \ldots, m$, $j = 1, 2, \ldots, t$, isomorphic to the graph H under the labeling g we have

$$ wt_g(H^j_i) = \sum_{v \in V(H^j_i)} g(v) + \sum_{e \in E(H^j_i)} g(e) $$

$$ = \sum_{v \in V(H^j_i)} \left(f(v) + (i - 1) \left\lceil \frac{wt_f^\text{max}(H)-wt_f^\text{min}(H)+1}{|V(H)|+|E(H)|} \right\rceil \right) $$

$$ + \sum_{e \in E(H^j_i)} \left(f(e) + (i - 1) \left\lceil \frac{wt_f^\text{max}(H)-wt_f^\text{min}(H)+1}{|V(H)|+|E(H)|} \right\rceil \right). $$
After some manipulation we get

\[
wt_f^g(H : H \subseteq G_i) = wt_f^g(H) + (|V(H)| + |E(H)|)(i - 1) \left[\frac{wt_f^\text{max}(H) - wt_f^\text{min}(H) + 1}{|V(H)| + |E(H)|} \right].
\]

This means that in the given copy of \(G \) the \(H \)-weights are distinct.

According to (8) we get that the largest weight of a subgraph isomorphic to \(H \) under the total labeling \(g \) in the \(i \)th copy of \(G \), \(i = 1, 2, \ldots, m \), denoted by \(wt_g^\text{max}(H : H \subseteq G_i) \), is at most

\[
wt_g^\text{max}(H : H \subseteq G_i) \leq wt_f^\text{max}(H) + (|V(H)| + |E(H)|)(i - 1) \left[\frac{wt_f^\text{max}(H) - wt_f^\text{min}(H) + 1}{|V(H)| + |E(H)|} \right].
\]

and the smallest weight of a subgraph isomorphic to \(H \) under the total labeling \(g \) in the \((i + 1)\)th copy of \(G \), \(i = 1, 2, \ldots, m - 1 \), denoted by \(wt_g^\text{min}(H : H \subseteq G_{i+1}) \), is at least

\[
wt_g^\text{min}(H : H \subseteq G_{i+1}) \geq wt_f^\text{min}(H) + (|V(H)| + |E(H)|)i \left[\frac{wt_f^\text{max}(H) - wt_f^\text{min}(H) + 1}{|V(H)| + |E(H)|} \right].
\]

After some manipulation we get

\[
wt_g^\text{min}(H : H \subseteq G_{i+1}) \geq wt_f^\text{min}(H) + (|V(H)| + |E(H)|)i \left[\frac{wt_f^\text{max}(H) - wt_f^\text{min}(H) + 1}{|V(H)| + |E(H)|} \right],
\]

As

\[
\left[\frac{wt_f^\text{max}(H) - wt_f^\text{min}(H) + 1}{|V(H)| + |E(H)|} \right] \geq \frac{wt_f^\text{max}(H) - wt_f^\text{min}(H) + 1}{|V(H)| + |E(H)|},
\]

we obtain

\[
wt_g^\text{min}(H : H \subseteq G_{i+1}) \geq wt_f^\text{min}(H)
\]

\[
+ (|V(H)| + |E(H)|)(i - 1) \left[\frac{wt_f^\text{max}(H) - wt_f^\text{min}(H) + 1}{|V(H)| + |E(H)|} \right],
\]

\[
+ (wt_f^\text{max}(H) - wt_f^\text{min}(H) + 1)
\]

\[
= wt_f^\text{max}(H) + (|V(H)| + |E(H)|)(i - 1) \left[\frac{wt_f^\text{max}(H) - wt_f^\text{min}(H) + 1}{|V(H)| + |E(H)|} \right].
\]
On Total H-Irregularity Strength of the Disjoint Union ...

$$= wt_f^{\text{max}}(H) + (|V(H)| + |E(H)|)(i - 1) \left\lceil \frac{wt_f^{\text{max}}(H) - wt_f^{\text{min}}(H) + 1}{|V(H)| + |E(H)|} \right\rceil + 1$$

$$\geq wt_g^{\text{max}}(H : H \subset G_i) + 1 > wt_g^{\text{max}}(H : H \subset G_i).$$

Thus in all components the H-weights are distinct. This concludes the proof. ■

We obtain the following corollary.

Corollary 5. Let G be a graph admitting an H-irregular total ths(G,H)-labeling f. Let m be a positive integer. Then

$$\text{ths}(mG,H) \leq m \text{ths}(G,H).$$

Proof. Let f be a ths(G,H)-labeling of a graph G and let ths(G,H) = k. As $wt_f^{\text{min}}(H) \geq |V(H)| + |E(H)|$ and $wt_f^{\text{max}}(H) \leq (|V(H)| + |E(H)|)k$ we get

$$\left\lceil \frac{wt_f^{\text{max}}(H) - wt_f^{\text{min}}(H) + 1}{|V(H)| + |E(H)|} \right\rceil \leq \left\lceil \frac{(|V(H)| + |E(H)|)k - (|V(H)| + |E(H)|) + 1}{|V(H)| + |E(H)|} \right\rceil = \left\lfloor k - 1 + \frac{1}{|V(H)| + |E(H)|} \right\rfloor = k.$$

Hence, by Theorem 4,

$$\text{ths}(mG,H) \leq \text{ths}(G,H) + (m - 1) \left\lceil \frac{wt_f^{\text{max}}(H) - wt_f^{\text{min}}(H) + 1}{|V(H)| + |E(H)|} \right\rceil \leq k + (m - 1)k = mk.$$

Let $\{H^1, H^2, \ldots, H^t\}$ be the set of all subgraphs of G isomorphic to H. Let f be an H-irregular total k-labeling of a graph G with ths(G,H) = k such that

$$\{ wt_f(H^j) : j = 1, 2, \ldots, t \}$$

$$= \{ wt_f^{\text{min}}(H), wt_f^{\text{min}}(H) + 1, \ldots, wt_f^{\text{min}}(H) + t - 1 \}.$$ (9)

Evidently, if the fraction

$$\frac{wt_f^{\text{max}}(H) - wt_f^{\text{min}}(H) + 1}{|V(H)| + |E(H)|}$$

is an integer then the weights of all H-weights in mG under the total labeling g of mG defined in the proof of Theorem 4 constitute the set

$$\{ wt_f^{\text{min}}(H), wt_f^{\text{min}}(H) + 1, \ldots, wt_f^{\text{min}}(H) + mt - 1 \}.$$

In particular, this implies that the upper bound for ths(mG,H) given in Theorem 4 is tight if G is a graph that satisfies the conditions mentioned above.
Theorem 6. Let G be a graph admitting an H-covering given by t subgraphs isomorphic to H. Let f be an H-irregular total $\text{ths}(G, H)$-labeling of G such that
\[\{\text{wt}_f(H^j) : j = 1, 2, \ldots, t\} = \{\text{wt}_{f}^{\min}(H), \text{wt}_{f}^{\min}(H) + 1, \ldots, \text{wt}_{f}^{\min}(H) + t - 1\}. \]

If the fraction \(\frac{t}{|V(H)| + |E(H)|} \) is an integer then

\[\text{ths}(mG, H) \leq \text{ths}(G, H) + \frac{(m-1)t}{|V(H)| + |E(H)|}. \]

Moreover, if \(\text{ths}(G, H) = \left[1 + \frac{t}{|V(H)| + |E(H)|}\right] = 1 + \frac{(m-1)t}{|V(H)| + |E(H)|} \) then

\[\text{ths}(mG, H) = \text{ths}(G, H) + \frac{(m-1)t}{|V(H)| + |E(H)|} = 1 + \frac{ml}{|V(H)| + |E(H)|}. \]

Theorem 2 gives the exact value for the total P_r-irregularity strength for a path P_r. Moreover, the P_r-irregular total $\{(s + r - 1)/(2s - 1)\}$-labeling of P_r described in the proof of Theorem 2 in [7] has the property that the set of P_r-weights consists of t consecutive integers, where $t = r - s + 1$ is the number of all subgraphs in P_r isomorphic to P_s. As $|V(P_r)| = s$ and $|E(P_r)| = s - 1$ and if the number $(r - s + 1)/(2s - 1)$ is an integer then according to Theorem 6 we get that

\[\text{ths}(mP_r, P_s) = \text{ths}(P_r, P_s) + (m - 1)\frac{r - s + 1}{2s - 1} = \left[\frac{s + r - 1}{2s - 1}\right] + (m - 1)\frac{r - s + 1}{2s - 1} \]
\[= \left[\frac{s + r - 1 + 2s - 1 - 1}{2s - 1}\right] + (m - 1)\frac{r - s + 1}{2s - 1} \]
\[= \left[\frac{r - s + 1}{2s - 1} + 1 - \frac{1}{2s - 1}\right] + (m - 1)\frac{r - s + 1}{2s - 1} \]
\[= \frac{r - s + 1}{2s - 1} + 1 + (m - 1)\frac{r - s + 1}{2s - 1} = m\frac{r - s + 1}{2s - 1} + 1. \]

Thus we obtain the following result.

Corollary 7. Let $m, r, s, m \geq 1, 2 \leq s \leq r$, be positive integers. If $2s - 1$ divides $r - s + 1$, then

\[\text{ths}(mP_r, P_s) = \frac{m(r - s + 1)}{(2s - 1)} + 1. \]

If H is isomorphic to K_2 then $\text{ths}(G, K_2) = \text{tes}(G)$. Immediately from Theorem 4 the following corollary follows.

Corollary 8. Let m be a positive integer. Then

\[\left\lceil \frac{m|E(G)| + 2}{3} \right\rceil \leq \text{ths}(mG, K_2) = \text{tes}(mG) \leq \text{tes}(G) + (m - 1)\left\lceil \frac{\text{wt}_{f}^{\min} - \text{wt}_{f}^{\max} + 1}{3}\right\rceil, \]

where wt_{f}^{\max} and wt_{f}^{\min} are the largest and smallest edge weights under a total $\text{tes}(G)$-labeling f of G.
3. Disjoint Union of Two Non-Isomorphic Graphs

In this section we will deal with the total H-irregularity strength of two graphs G_1 and G_2 admitting an H-covering. From Theorem 1 we immediately obtain

Corollary 9. Let G_i, $i = 1, 2$, be a graph admitting an H-covering given by t_i subgraphs isomorphic to H. Then

$$\text{ths}(G_1 \cup G_2, H) \geq \left[1 + \frac{t_1 + t_2 - 1}{|V(H)| + |E(H)|} \right].$$

The next theorem gives an upper bound for $\text{ths}(G_1 \cup G_2, H)$.

Theorem 10. Let G_i, $i = 1, 2$, be a graph having an H-irregular total $\text{ths}(G_i, H)$-labeling f_i. Then

$$\text{ths}(G_1 \cup G_2, H) \leq \min \left\{ \max \left\{ \text{ths}(G_2, H), \text{ths}(G_1, H) + \left[\frac{\text{wt}_{f_2}^{\max}(H) - \text{wt}_{f_1}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right] \right\}, \max \left\{ \text{ths}(G_1, H), \text{ths}(G_2, H) + \left[\frac{\text{wt}_{f_1}^{\max}(H) - \text{wt}_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right] \right\} \right\},$$

where $\text{wt}_{f_i}^{\max}(H)$ and $\text{wt}_{f_i}^{\min}(H)$ are the largest and smallest weights of a subgraph H under a total $\text{ths}(G_i, H)$-labeling f_i of G_i.

Proof. Let G_i, $i = 1, 2$, be a graph that admits an H-covering given by t_i subgraphs isomorphic to H. We denote these subgraphs as $H_i^1, H_i^2, \ldots, H_i^{t_i}$. Assume that f_i is an H-irregular total k_i-labeling of a graph G_i with $\text{ths}(G_i, H) = k_i$. The smallest weight of a subgraph H under the total k_i-labeling f_i is denoted by the symbol $\text{wt}_{f_i}^{\min}(H)$. Evidently

$$\text{wt}_{f_i}^{\min}(H) \geq |V(H)| + |E(H)|. \tag{10}$$

Analogously, the largest weight of a subgraph H under the total k_i-labeling f_i is denoted by the symbol $\text{wt}_{f_i}^{\max}(H)$. It holds that

$$\text{wt}_{f_i}^{\max}(H) \geq \text{wt}_{f_i}^{\min}(H) + t_i - 1 \tag{11}$$

and

$$\text{wt}_{f_i}^{\max}(H) \leq (|V(H)| + |E(H)|)k_i. \tag{12}$$

Thus $f_i : V(G_i) \cup E(G_i) \rightarrow \{1, 2, \ldots, k_i\}$ and

$$\{\text{wt}_{f_i}(H_i^j) : j = 1, 2, \ldots, t_i\} \subset \{\text{wt}_{f_i}^{\min}(H), \text{wt}_{f_i}^{\min}(H) + 1, \ldots, \text{wt}_{f_i}^{\max}(H)\}. \tag{13}$$
Let us define the total labeling \(g \) of \(G_1 \cup G_2 \) in the following way.

\[
g(x) = \begin{cases}
 f_1(x) & \text{if } x \in V(G_1) \cup E(G_1), \\
 f_2(x) + \left[\frac{w_{f_1}^{\max}(H) - w_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right] & \text{if } x \in V(G_2) \cup E(G_2).
\end{cases}
\]

Evidently, all the labels are not greater than

\[
\max \left\{ k_1, k_2 + \left[\frac{w_{f_1}^{\max}(H) - w_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right] \right\}.
\]

For the weight of the subgraph \(H^j_1 \), \(j = 1, 2, \ldots, t_1 \), isomorphic to the graph \(H \) under the labeling \(g \) we get

\[
wt_g(H^j_1) = \sum_{v \in V(H^j_1)} g(v) + \sum_{e \in E(H^j_1)} g(e) = \sum_{v \in V(H^j_1)} f_1(v) + \sum_{e \in E(H^j_1)} f_2(e) = wt_{f_1}(H^j_1).
\]

For the weight of the subgraph \(H^j_2 \), \(j = 1, 2, \ldots, t_2 \), isomorphic to the graph \(H \) under the labeling \(g \) we get

\[
wt_g(H^j_2) = \sum_{v \in V(H^j_2)} g(v) + \sum_{e \in E(H^j_2)} g(e) \\
= \sum_{v \in V(H^j_2)} \left(f_2(v) + \left[\frac{w_{f_1}^{\max}(H) - w_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right] \right) \\
+ \sum_{e \in E(H^j_2)} \left(f_2(e) + \left[\frac{w_{f_1}^{\max}(H) - w_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right] \right) \\
= \sum_{v \in V(H^j_2)} f_2(v) + \sum_{e \in E(H^j_2)} f_2(e) + |V(H)| \left[\frac{w_{f_1}^{\max}(H) - w_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right] \\
+ |E(H)| \left[\frac{w_{f_1}^{\max}(H) - w_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right] \\
= wt_{f_2}(H^j_2) + (|V(H)| + |E(H)|) \left[\frac{w_{f_1}^{\max}(H) - w_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right].
\]

According to (13) we get that the largest weight of a subgraph \(H \) under the total labeling \(g \) in \(G_1 \), denoted by \(wt_g^{\max}(H : H \subset G_1) \), is at most

\[
wt_g^{\max}(H : H \subset G_1) = wt_{f_1}^{\max}(H)
\]

and the smallest weight of a subgraph \(H \) under the total labeling \(g \) in \(G_2 \), denoted by \(wt_g^{\min}(H : H \subset G_2) \), is at least

\[
wt_g^{\min}(H : H \subset G_2) \geq wt_{f_2}^{\min}(H) + (|V(H)| + |E(H)|) \left[\frac{w_{f_1}^{\max}(H) - w_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right].
\]
Note, that when writing \(H \), we only consider subgraphs of \(G_i \) isomorphic to \(H \).

As

\[
\frac{wt_{f_1}^{\text{max}}(H) - wt_{f_2}^{\text{min}}(H) + 1}{|V(H)| + |E(H)|} \geq \frac{wt_{f_1}^{\text{max}}(H) - wt_{f_2}^{\text{min}}(H) + 1}{|V(H)| + |E(H)|}
\]

we get

\[
wt_g^{\text{min}}(H : H \subset G_2) \geq wt_{f_2}^{\text{min}}(H) + (|V(H)| + |E(H)|) \frac{wt_{f_1}^{\text{max}}(H) - wt_{f_2}^{\text{min}}(H) + 1}{|V(H)| + |E(H)|}
\]

\[
\geq wt_{f_2}^{\text{min}}(H) + (wt_{f_1}^{\max}(H) - wt_{f_2}^{\min}(H) + 1) = wt_{f_1}^{\max}(H) + 1
\]

\[
> wt_{f_1}^{\max}(H) = wt_g^{\max}(H : H \subset G_1).
\]

Thus all the \(H \)-weights under the labeling \(g \) in \(G_1 \cup G_2 \) are distinct.

Analogously we can define the total labeling \(h \) of \(G_1 \cup G_2 \) such that

\[
h(x) = \begin{cases} f_2(x) & \text{if } x \in V(G_2) \cup E(G_2), \\ f_1(x) + \left\lceil \frac{wt_{f_2}^{\max}(H) - wt_{f_1}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right\rceil & \text{if } x \in V(G_1) \cup E(G_1). \end{cases}
\]

Using similar arguments we can also show that under the total labeling \(h \) the \(H \)-weights in \(G_1 \cup G_2 \) are distinct.

Thus \(g \) and \(h \) are \(H \)-irregular total labelings of \(G \). Immediately from this fact we get

\[
\text{ths}(G_1 \cup G_2, H)
\leq \min \left\{ \max \left\{ \text{ths}(G_2, H), \text{ths}(G_1, H) + \left\lceil \frac{wt_{f_2}^{\max}(H) - wt_{f_1}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right\rceil \right\}, \\
\max \left\{ \text{ths}(G_1, H), \text{ths}(G_2, H) + \left\lceil \frac{wt_{f_1}^{\max}(H) - wt_{f_2}^{\min}(H) + 1}{|V(H)| + |E(H)|} \right\rceil \right\} \right\}.
\]

Ramdani, Salman, Assiyatum, Semaničová-Feňovčíková and Bača [18] gave an upper bound for the total edge irregularity strength of the disjoint union of graphs by the following form.

Theorem 11 [18]. The total edge irregularity strength of the disjoint union of graphs \(G_1, G_2, \ldots, G_m, m \geq 2 \), is

\[
\text{tes} \left(\bigcup_{i=1}^{m} G_i \right) \leq \sum_{i=1}^{m} \text{tes}(G_i) - \left\lfloor \frac{m-1}{2} \right\rfloor.
\]
If H is isomorphic to K_2 then from Theorem 10 it follows that
\[
\text{ths}(G_1 \cup G_2, K_2) = \text{tes}(G_1 \cup G_2)
\leq \min \left\{ \max \left\{ \text{tes}(G_2), \text{tes}(G_1) + \left\lfloor \frac{3 \text{tes}(G_2) - 2}{3} \right\rfloor \right\},
\max \left\{ \text{tes}(G_1), \text{tes}(G_2) + \left\lfloor \frac{3 \text{tes}(G_1) - 2}{3} \right\rfloor \right\} \right\}
= \text{tes}(G_1) + \text{tes}(G_2)
\]
which is equal to the result from Theorem 11.

4. Conclusion

In this paper, we have estimated lower and upper bounds for the total H-irregularity strength for the disjoint union of m copies of a graph. We have proved that if a graph G admits an H-irregular total $\text{ths}(G, H)$-labeling f and m is a positive integer then
\[
\text{ths}(mG, H) \leq \text{ths}(G, H) + (m - 1) \left\lfloor \frac{\text{wt}^\text{max}(H) - \text{wt}^\text{min}(H) + 1}{|V(H)| + |E(H)|} \right\rfloor,
\]
where $\text{wt}^\text{max}(H)$ and $\text{wt}^\text{min}(H)$ are the largest and smallest weights of a subgraph H under a total $\text{ths}(G, H)$-labeling f of G. This upper bound is tight.

We have also proved an upper bound for the total H-irregularity strength for the disjoint union of two non-isomorphic graphs.

Acknowledgments

The research for this article was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-15-0116, by VEGA 1/0233/18, by the Spanish Research Council under project MTM2014-60127-P and symbolically by the Catalan Research Council under grant 2014SGR1147.

References

On Total H-Irregularity Strength of the Disjoint Union ...

doi:10.1137/070707385

Received 12 April 2017
Revised 5 February 2018
Accepted 22 February 2018